Lesson 8

41. $\lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$. Ans. e^{2}. 42. $\lim _{x \rightarrow \infty}\left(1-\frac{1}{x}\right)^{x}$. Ans. $\frac{1}{e}$. 43. $\lim _{x \rightarrow \infty}\left(\frac{x}{1+x}\right)^{x}$. Ans. $\frac{1}{e}$. 44. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n+5}$ Ans. e. 45. $\lim _{n \rightarrow \infty}\{n[\ln (n+1)-\ln n]\}$. Ans. 1. 46. $\lim _{x \rightarrow \frac{\pi}{2}}(1+\cos x)^{9 \sec x}$. Ans. $e^{3} .47 . \lim _{x \rightarrow 0} \frac{\ln (1+\alpha x)}{x}$. Ans. α. 48. $\lim _{x \rightarrow \infty}\left(\frac{2 x+3}{2 x+1}\right)^{x+1}$. Ans.e. 49. $\lim _{x \rightarrow 0}\left(1+3 \tan ^{2} x\right)^{\cot ^{2} x}$. Ans. es. 50. $\lim _{m \rightarrow \infty}\left(\cos \frac{x}{m}\right)^{m}$. Ans. 1 .
42. $\lim _{\alpha \rightarrow \infty} \frac{\ln \left(1+e^{\alpha}\right)}{\alpha}$. Ans. 1 as $\alpha \rightarrow+\infty, 0$ as $\alpha \rightarrow-\infty$. 52. $\lim _{x \rightarrow 0} \frac{\sin \alpha x}{\sin \beta x}$. Ans. $\frac{\alpha}{\beta}$. 53. $\lim _{x \rightarrow \infty} \frac{a^{x}-1}{x}(a>1)$. Ans. $+\infty$ as $x \rightarrow+\infty, 0$ as $x \rightarrow-\infty$.
43. $\lim _{n \rightarrow \infty} n\left[a^{\frac{1}{n}}-1\right]$. Ans. $\ln a$.
44. $\lim _{x \rightarrow 0} \frac{e^{\alpha x}-e^{\beta x}}{x}$. Ans. $\alpha-\beta$.
45. $\lim _{x \rightarrow 0} \frac{e^{x x}-e^{\beta x}}{\sin \alpha x-\sin \beta x}$. Ans. 1 .

Determine the points of discontinuity of the functions:
57. $y=\frac{x-1}{x(x+1)\left(x^{2}-4\right)}$. Ans. Discontinuities at $x=-2,-1,0,2$. 58. $y=\tan \frac{1}{x}$.

Ans. Discontinuities at $x=0$ and $x= \pm \frac{2}{\pi}, \pm \frac{2}{3 \pi}, \ldots, \pm \frac{2}{(2 n+1) \pi}, \ldots$.
89. Find the points of discontinuity of the function $y=1+2^{\frac{1}{x}}$ and construct the graph of this function. Ans. Discontinuity at $x=0(y \longrightarrow+\infty$ as $x \longrightarrow 0+0$, $y \rightarrow 1$ as $x \longrightarrow 0-0$).
60. From among the following infinitesimals (as $x \rightarrow 0): x^{2}, \sqrt{x(1-x)}, \sin 3 x$, $2 x \cos x \sqrt[3]{\tan ^{2} x}, x e^{2 x}$, select infinitesimals of the same order as x, and also of higher and lower order than x. Ans. Infinitesimals of the same order as x are $\sin 3 x$ and $x e^{2 x}$; infinitesimals of higher order than x, x^{2} and $2 x \cos x \sqrt[3]{\tan ^{2} x}$, infinitesimals of lower order than $x, \sqrt{x(1-x)}$.
61. Choose from among the same infinitesimals (as $x \rightarrow 0$) such that are equivalent to the infinitesimal $x: 2 \sin x, \frac{1}{2} \tan 2 x, x-3 x^{2}, \sqrt{2 x^{2}+x^{3}}, \ln (1+x)$, $x^{3}+3 x^{4}$. Ans. $\frac{1}{2} \tan 2 x, x-3 x^{2}, \ln (1+x)$.
62. Check to see that as $x \rightarrow 1$, the infinitesimals $1-x$ and $1-\sqrt[3]{x}$ are of the same order. Are they equivalent? Ans. $\lim _{x \rightarrow 1} \frac{1-x}{1-\sqrt[3]{x}}=3$; hence, these infinitesimals are of the same order, but they are not equivalent.

