Lesson 8

41.
$$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^{x} \cdot Ans. e^{2} \cdot 42. \lim_{x \to \infty} \left(1 - \frac{1}{x}\right)^{x} \cdot Ans. \frac{1}{e} \cdot 43. \lim_{x \to \infty} \left(\frac{x}{1 + x}\right)^{x} \cdot Ans. \frac{1}{e} \cdot 44. \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{n+5} Ans. e. 45. \lim_{n \to \infty} \left\{n \left[\ln (n+1) - \ln n\right]\right\} \cdot Ans. 1.$$

48.
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{3 \sec x} \cdot Ans. e^{3} \cdot 47. \lim_{x \to 0} \frac{\ln (1 + \alpha x)}{x} \cdot Ans. \alpha \cdot 48. \lim_{x \to \infty} \left(\frac{2x + 3}{2x + 1}\right)^{x+1} \cdot Ans. e.$$

Ans. e. 49.
$$\lim_{x \to 0} (1 + 3\tan^{2} x)^{\cot^{3} x} \cdot Ans. e^{3} \cdot 50. \lim_{m \to \infty} \left(\cos \frac{x}{m}\right)^{m} \cdot Ans. 1.$$

51.
$$\lim_{\alpha \to \infty} \frac{\ln(1 + e^{2})}{\alpha} \cdot Ans. 1 \text{ as } \alpha \to +\infty, 0 \text{ as } \alpha \to -\infty. 52. \lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} \cdot Ans. \frac{\alpha}{\beta} \cdot 53. \lim_{x \to \infty} \frac{a^{x} - 1}{x} (a > 1) \cdot Ans. +\infty \text{ as } x \to +\infty, 0 \text{ as } x \to -\infty.$$

54.
$$\lim_{n \to \infty} n \left[\frac{1}{a^{n}} - 1 \right] \cdot Ans. \ln a. 55. \lim_{x \to 0} \frac{e^{ax} - e^{\beta x}}{x} \cdot Ans. \alpha - \beta.$$

56.
$$\lim_{x \to 0} \frac{e^{2x} - e^{\beta x}}{\sin \alpha x - \sin \beta x} \cdot Ans. 1.$$

Determine the points of discontinuity of the functions:

57. $y = \frac{x-1}{x(x+1)(x^2-4)}$. Ans. Discontinuities at x = -2, -1, 0, 2. 58. $y = \tan \frac{1}{x}$. Ans. Discontinuities at x = 0 and $x = \pm \frac{2}{\pi}, \pm \frac{2}{3\pi}, \dots, \pm \frac{2}{(2n+1)\pi}, \dots$

59. Find the points of discontinuity of the function $y=1+2^{\overline{x}}$ and construct the graph of this function. Ans. Discontinuity at x=0 ($y \rightarrow +\infty$ as $x \rightarrow 0+0$, $y \rightarrow 1$ as $x \rightarrow 0-0$). **60.** From among the following infinitesimals (as $x \rightarrow 0$): x^2 , $\sqrt{x(1-x)}$, sin 3x, $2x \cos x \sqrt[3]{\tan^2 x}$, xe^{2x} , select infinitesimals of the same order as x, and also of higher and lower order than x. Ans. Infinitesimals of the same order as x are sin 3x and xe^{2x} ; infinitesimals of higher order than x, x^2 and $2x \cos x \sqrt[3]{\tan^2 x}$, $\tan^2 x$, infinitesimals of higher order than x, $\sqrt{x(1-x)}$.

61. Choose from among the same infinitesimals (as $x \rightarrow 0$) such that are equivalent to the infinitesimal x: $2 \sin x$, $\frac{1}{2} \tan 2x$, $x - 3x^2$, $\sqrt{2x^2 + x^3}$, $\ln(1+x)$,

$$x^3+3x^4$$
. Ans. $\frac{1}{2} \tan 2x$, $x-3x^2$, $\ln(1+x)$.

62. Check to see that as $x \rightarrow 1$, the infinitesimals 1-x and $1-\sqrt[3]{x}$ are of the same order. Are they equivalent? Ans. $\lim_{x \rightarrow 1} \frac{1-x}{1-\sqrt[3]{x}} = 3$; hence, these infinitesimals are of the same order, but they are not equivalent.

Even examples must be solved in class, odd examples must be solved at home