Lesson 6

THE LIMIT OF A FUNCTION

In this section we shall consider certain cases of the variation of a function when the argument x approaches a certain limit a or infinity.

Definition 1. Let the function $y=f(x)$ be defined in a certain neighbourhood of a point a or at certain points of this neighbourhood. The function $y=f(x)$ approaches the limit $b(y \rightarrow b)$ as x approaches $a(x \rightarrow a)$, if for every positive number ε, no matter how small, it is possible to indicate a positive number δ such
that for all x, different from a and satisfying the inequality*

$$
|x-a|<\delta
$$

we have the inequality

$$
|f(x)-b|<\varepsilon
$$

If b is the limit of the function $f(x)$ as $x \rightarrow a$, we write

$$
\lim _{x \rightarrow a} f(x)=b
$$

or $f(x) \rightarrow b$ as $x \rightarrow a$.
If $f(x) \rightarrow b$ as $x \rightarrow a$, this is illustrated on the graph of the function $y=f(x)$ as follows (Fig. 31). Since from the inequality

Fig. 31 $|x-a|<\delta$ there follows the inequality $|f(x)-b|<\varepsilon$, this means that for all points x that are not more distant from the point a than δ, the points M of the graph of the function $y=f(x)$ lie within a band of width 2ε bounded by the lines $y=b-\varepsilon$ and $y=b+\varepsilon$.

Note 1. We may also define the limit of the function $f(x)$ as $x \rightarrow a$ as follows.

Let a variable x assume values such (that is, ordered in such fashion) that if

$$
\left|x^{*}-a\right|>\left|x^{* *}-a\right|
$$

then $x^{* *}$ is the subsequent value and x^{*} is the preceding value; but if

$$
\left|\bar{x}^{*}-a\right|=\left|\bar{x}^{* *}-a\right| \text { and } \bar{x}^{*}<\bar{x}^{* *}
$$

then $\bar{x}^{* *}$ is the subsequent value and \bar{x}^{*} is the preceding value.
In other words, of two points on a number scale, the subsequent one is that which is closer to the point a; at equal distances, the subsequent one is that which is to the right of the point a.

Let a variable quantity x ordered in this fashion approach the limit $a[x \rightarrow a$ or $\lim x=a]$.

Let us further consider the variable $y==f(x)$. We shall here and henceforward consider that of the two values of a function, the

[^0]subsequent one is that which corresponds to the subsequent value of the argument.

If, as $x \rightarrow a$, a variable y thus defined approaches a certain limit b, we shall write

$$
\lim _{x \rightarrow a} f(x)=b
$$

and we shall say that the function $y=f(x)$ approaches the limit b as $x \rightarrow a$.

It is easy to prove that both definitions of the limit of a function are equivalent.

Note 2. If $f(x)$ approaches the limit b_{1} as x approaches a certain number a so that x takes on only values less than a we write $\lim f(x)=b_{1}$ and call b_{1} the limit on $x \rightarrow a-0$ the left at the point a of the function. If x takes on only values greater than a, we write $\lim _{x \rightarrow a+0} f(x)=b_{2}$ and call b_{2} the limit on the right at the point a of the function (Fig. 32).

It can be proved that if the limit on the right and the limit on the left exist and are equal, that is, $b_{1}=b_{2}=b$, then b will be the limit in the sense of

Fig. 32 the foregoing definition of a limit at the point a. And conversely, if there exists a limit b of a function at the point a, then there exist limits of the function at the point a both on the right and on the left and they are equal.

Example 1. Let us prove that $\lim _{x \rightarrow 2}(3 x+1)=7$. Indeed, let an arbitrary $\varepsilon>0$ be given; for the inequality $|(3 x+1)-7|<\varepsilon$ to be fulfilled it is necessary to have the following inequalities fulfilled:

$$
|3 x-6|<\varepsilon,|x-2|<\frac{\varepsilon}{3},-\frac{\varepsilon}{3}<x-2<\frac{\varepsilon}{3}
$$

Thus, given any ε, for all values of x satisfying the inequality $|x-2|<\frac{\varepsilon}{3}=$ $=\delta$, the value of the function $3 x+1$ will differ from 7 by less than ε. And this means that 7 is the limit of the function as $x \rightarrow 2$.

Note 3. For a function to have a limit as $x \rightarrow a$, it is not necessary that the function be defined at the point $x=a$. When finding the limit we consider the values of the function in the neighbourhood of the point a that are different from a; this is clearly illustrated in the following case.

Example 2. We shall prove that $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=4$. Here, the function $\frac{x^{2}-4}{x-2}$ is not defined for $x=2$.

It is necessary to prove that for an arbitrary ε there will be a δ such that the following inequality will be fulfilled:

$$
\begin{equation*}
\left|\frac{x^{2}-4}{x-2}-4\right|<\varepsilon \tag{1}
\end{equation*}
$$

if $|x-2|<\delta$. But when $x \neq 2$ inequality (1) is equivalent to the inequality

$$
\left|\frac{(x-2)(x+2)}{x-2}-4\right|=|(x+2)-4|<\varepsilon
$$

or

$$
\begin{equation*}
|x-2|<\varepsilon \tag{2}
\end{equation*}
$$

Thus, for an arbitrary ε, inequality (1) will be fulfilled if inequality (2) is fulfilled (here, $\delta=\varepsilon$), which means that the given function has the number 4 as its limit as $x \longrightarrow 2$.

Let us now consider certain cases of variation of a function as $x \rightarrow \infty$.

Definition 2. The function $f(x)$ approaches the limit b as $x \rightarrow \infty$ if for each arbitrarily small positive number ε it is possible to indicate a positive number N such that for all values of x that satisfy the inequality $|x|>N$ the inequality $|f(x)-b|<\varepsilon$ will be fulfilled.

Example 3. We will prove that

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{x}\right)=1
$$

or

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)=1
$$

It is necessary to prove that, for an arbitrary ε, the following inequality is fulfilled

$$
\begin{equation*}
\left|\left(1+\frac{1}{x}\right)-1\right|<\varepsilon \tag{3}
\end{equation*}
$$

provided $|x|>N$, where N is determined by the choice of ε. Inequality (3) is equivalent to the following inequality: $\left|\frac{1}{x}\right|<\varepsilon$, which will be fulfilled if

$$
|x|>\frac{1}{\varepsilon}=N
$$

which means that $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)=\lim _{x \rightarrow \infty} \frac{x+1}{x}=1$ (Fig. 33).
If we know the meanings of the symbols $x \rightarrow+\infty$ and $x \rightarrow-\infty$, the meanings of the following expressions are obvious:

Fig. 33
" $f(x)$ approaches b as $x \rightarrow+\infty$ " and
" $f(x)$ approaches b as $x \rightarrow-\infty$ " or, in symbols,

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=b, \\
& \lim _{x \rightarrow-\infty} f(x)=b
\end{aligned}
$$

[^0]: *Here we mean the values of x that satisfy the inequality $|x-a|<\delta$ and belong to the domain of definition of the function. We will encounter similar circumstances in the future. For instance, when considering the behaviour of a function as $x \rightarrow \infty$, it may happen that the function is defined only for positive integral values of x. And so in this case $x \rightarrow \infty$, assuming only positive integral values. We shall not specify this when it comes up later on.

