Lesson 6

THE LIMIT OF A FUNCTION

In this section we shall consider certain cases of the variation
of a function when the argument x approaches a certain limit a
or infinity.

Definition 1. Let the function y=/f(x) be defined in a certain
neighbourhood of a point a or at certain points of this neigh-
bourhood. The function y=f(x) approaches the limit b (y—b) as x
approaches a (x— a), if for every positive number &, no matter
how small, it is possible to indicate a positive number 6 such
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that for all x, different from a and satisfying the inequality*

|[x—a| <6

we have the inequality
|f(x)—b[<e

If b is the limit of the function f(x) as x— a, we write
,lf?},i(x)zb

or f(x)—b as x—a.
If f(x)—b as x—a, this is illustrated on the graph of the
function y=f(x) as follows (Fig. 31). Since from the inequality
y y=f(r) |x—a]<b there follows the ine-
quality |f(x)—b| < e, this means

bee that for all points x that are not
b Z 72¢  more distant from the point a than
b-¢€ I ) the points M of the graph of
the function y=f(x) lie within a
band of width 2¢ bounded by the

lines y==b—e¢ and y=>b+e¢.
NN Note 1. We may also define the
0 20 a a-0 g limit of the function f(x) asx—a

Fig. 31 as follows.

Let a variable x assume values
such (that is, ordered in such fashion) that if

| x*—a| > | x**—al

then x** is the subsequent value and x* is the preceding value;
but if

|x* —a|=|x**—a| and x* < x**

then x** is the subsequent value and x* is the preceding value.

In other words, of two points on a number scale, the subsequent
one is that which is closer to the point a; at equal distances, the
subsequent one is that which is to the right of the point a.

Let a variable quantity x ordered in this fashion approach the
limit @ [x—a or limx=a].

Let us further consider the variable y==f(x). We shall here and
henceforward consider that of the two values of a function, the

*Here we mean the values of x that satisfy the inequality |x—a| < 6
and belong to the domain of definition of the function. We will encounter
similar circumstances in the future. For instance, when considering the beha-
viour of a function as x—— oo, it may happen that the function is defined
only for positive integral values of x. And so in this case x — o0, assuming
only positive integral values. We shall not specify this when it comes up
later on.
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subsequent one is that which corresponds to the subsequent value
of the argument.
If, as x—a, a variable y thus defiped approaches a certain
limit b, we shall write
lim f(x)=b
X—>a
and we shall say that the function y=f(x) approaches the limit
b as x—a.
It is easy to prove that both definitions of the limit of a
function are equivalent.
Note 2. If f(x) approaches the limit b, as x approaches a certain
number a so that x takes on only values less than a we write
lim f(x)=b, and call b, the limit on vl
x>a-0 y-flx}
the left at the point a of the function.
If x takes on only values greater than

a, we write lim f(x)=b, and call b,
x—>a+0

the limit on the right at the point a of
the function (Fig. 32).

It can be proved that if the limit
on the right and the limit on the left
exist and are equal, that is, b,=b,=0b, 0
then b will be the limit in the sense of Fig. 32
the foregoing definition of a limit at the
point a. And conversely, if there exists a limit b of a function at
the point a, then there exist limits of the function at the point a
both on the right and on the left and they are equal.

Example 1. Let us prove that lim (3x41)=7. Indeed, let an arbitrary

X2
e > 0 be given; for the inequality |(3x41)—7| < & to be fulfilled it is neces-
sary to have the following inequalities fulfilled:

e e e
[3x—6| <e, |x—2]| <3 —-§<x—2<—3—

Thus, given any e, for all values of x satisfying the inequality | x—2| < %:

= §, the value of the function 3x+4-1 will differ from 7 by less than e. And
this means that 7 is the limit of the function as x — 2.

Note 3. For a function to have a limit as x —a, it is not ne-
cessary that the function be defined at the point x=a. When
finding the limit we consider the values of the function in the
neighbourhood of the point a that are different from a; this is
clearly illustrated in the following case.

x2— 4

Example 2. We shall prove that lim

=4. Here, the function
x—>2 X—2

x—2
is not defined for x=2.
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It is necessary to prove that for an arbitrary & there will be a § such that
the following inequality will be fulfilled:

x’—4_
x—2

4| <e (1)

if |x—2]| < 6. But when x # 2 inequality (1) is equivalent to the inequality
(x—2)(x+2)

A —4|=|(x+2)—-—4| <e

or
[x—2] <e @)

Thus, for an arbitrary e, inequality (1) will be fulfilled if inequality (2)
is fulfilled (here, § =e), which means that the given function has the number 4
as its limit as x — 2.

Let us now consider certain cases of variation of a function
as x — oo.

Definition 2. The function f(x) approaches the limit b as x— oo
if for each arbitrarily small positive number e it is possible to
indicate a positive number N such that for all values of x that
satifsfy the inequality |x]| > N the inequality |f(x)—b|<e will
be fulfilled.

Example 3. We will prove that
lim <x+l>=
> ® X

lim (1+%)=1

X —-»> ®©

or

gt“iisi]ndecessary to prove that, for an arbitrary e, the following inequality is
ulfille

|(1+—L-)—1|<e @)

provided |x| > N, where N is determined by the choice of e. Inequality (3)
is equivalent to the following inequality: I%—' < e, which wild be fulfilled if

1
|x] >—=N
e

which means that lim (1+%)= lim -’%1=1 (Fig. 33).

X = @® X > ®

If we know the meanings of the symbols x — 4 o0 and x —— o0,
the meanings of the following expressions are obvious:
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Fig. 33

]

“f(x) approaches b as x—+o00” and
“f(x) approaches b as x——o0” or, in symbols,

lim f(x)_—_b,
lim fix)=b

X+ -
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