Lesson 31 (even problems must be solved in class, odd examples must be solved at home)

1. Find (3+5i) (4-i). Ans. 17+17i. 2. Find (6+11i) (7+3i). Ans. 9+95i. 3. Find $\frac{3-i}{4+5i}$. Ans. $\frac{7}{41} - \frac{19}{41}i$. 4. Find $(4-7i)^3$. Ans. -524+7i. 5. Find $\sqrt[7]{i}$. Ans. $\pm \frac{1+i}{\sqrt{2}}$. 6. Find $\sqrt[7]{-5-12i}$. Ans. $\pm (2-3i)$. 7. Reduce the following expressions to trigonometric form: (a) 1+i. Ans. $\sqrt[7]{2}$ $\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$, (b) 1-i. Ans. $\sqrt[7]{2}$ $\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)$. 8. Find $\sqrt[3]{i}$. Ans. $\frac{i+\sqrt{3}}{2}$, -i, $\frac{i-\sqrt{3}}{2}$. 9. Express the following expressions in terms of powers of $\sin x$ and $\cos x$: $\sin 2x$, $\cos 2x$, $\sin 4x$, $\cos 4x$, $\sin 5x$, $\cos 5x$. 10. Express the following in terms of the sine and cosine of multiple arcs: $\cos^2 x$, $\cos^3 x$, $\cos^4 x$, $\cos^5 x$, $\cos^6 x$; $\sin^2 x$, $\sin^3 x$, $\sin^4 x$, $\sin^5 x$. 11. Divide $f(x) = x^3 - 4x^2 + 8x - 1$ by x + 4. Ans. $f(x) = (x+4)(x^2 - 8x + 40) - 161$, that is, the quotient is equal to $x^2 - 8x + 40$; and the remainder is f(-4) = -161. 12. Divide $f(x) = x^4 + 12x^3 + 54x^2 + 108x + 81$ by x + 3. Ans. $f(x) = (x+3)(x^3 + 9x^2 + 27x + 27)$. 13. Divide $f(x) = x^7 - 1$ by x - 1. Ans. $f(x) = (x-1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$. Factor the following polynomials into factors with real coefficients: 14. $f(x) = x^4 - 1$. Ans. $f(x) = (x-1)(x+1)(x^2+1)$. 15. $f(x) = x^2 - x - 2$. Ans. f(x) = (x-2)(x+1). 16. $f(x) = x^3 + 1$. Ans. $f(x) = (x+1)(x^2 - x + 1)$.

17. Experiment yielded the following values of y as a function of x:

$$y_1 = 4$$
 for $x_1 = 0$
 $y_2 = 6$ for $x_2 = 1$
 $y_3 = 10$ for $x_3 = 2$

Approximate the function by a second-degree polynomial. Ans. x^2+x+4 . 18. Find a polynomial of degree four that takes on the values 2, 1, -1, 5, 0 for x=1, 2, 3, 4, 5, respectively. Ans. $-\frac{7}{6}x^4+\frac{79}{6}x^3-\frac{151}{3}x^2+\frac{226}{3}x-35$.

19. Find a polynomial of the lowest possible degree that takes on the values 3, 7, 9, 19 for x=2, 4, 5, 10, respectively. Ans. 2x-1.

20. Find Bernstein polynomials of degree 1, 2, 3 and 4 for the function $y = \sin \pi x$ on the interval [0, 1]. Ans. $B_1(x) = 0$, $B_2(x) = 2x(1-x)$, $B_3(x) = \frac{3\sqrt{3}}{2}x(1-x)$, $B_4(x) = 2x(1-x)\left[(2\sqrt{2}-3)x^2-(2\sqrt{2}-3)x+\sqrt{2}\right]$.