Lesson 29 (even problems must be solved in class, odd examples must be solved at home)

36. Show that at each point of the lemniscate $\rho^{2}=a^{2} \cos 2 \varphi$ the curvature is proportional to the radius vector of the point.
37. Find the greatest value of the radius of curvature of the curve $\rho=a \sin ^{3} \frac{\varphi}{3}$. Ans. $R=\frac{3}{4} a$.
38. Find the coordinates of the centre of curvature of the curve $y=x \ln x$ at the point where $y^{\prime}=0$. Ans. $\left(e^{-1}, 0\right)$.
39. Prove that for points of the spiral of Archimedes $\rho=a \varphi$ as $\varphi \rightarrow \infty$ the magnitude of the difference between the radius vector and the radius of curvature approaches zero.
40. Find the parabola $y=a x^{2}+b x+c$, which has common tangent and curvature with the sine curve $y=\sin x$ at the point $\left(\frac{\pi}{2}, 1\right)$. Make a drawing. Ans. $y=-\frac{x^{2}}{2}+\frac{\pi x}{2}+1-\frac{\pi^{2}}{8}$.
41. The function $y=f(x)$ is defined as follows:

$$
\begin{aligned}
& f(x)=x^{3} \text { in the interval }-\infty<x \leqslant 1 \\
& f(x)=a x^{2}+b x+c \text { in the interval } 1<x<+\infty
\end{aligned}
$$

What must $a_{2} b$ and c be for the curve $y=f(x)$ to have continuous curvature everywhere? Make a drawing. Ans. $a=3, b=-3, c=1$.
42. Show that the radius of curvature of a cycloid at any one of its points is twice the length of the normal at that point.
43. Write the equation of the circle of curvature of the parabola $y=x^{2}$ at the point (1, 1). Ans. $(x+4)^{2}+\left(y-\frac{7}{2}\right)^{2}=\frac{125}{4}$.
44. Write the equation of the circle of curvature of the curve $y=\tan x$ at the point $\left(\frac{\pi}{4}, 1\right)$. Ans. $\left(x-\frac{\pi-10}{4}\right)^{2}+\left(y-\frac{9}{4}\right)^{2}=\frac{125}{16}$.
45. Find the length of the entire evolute of an ellipse whose semi-axes are a and b. Ans. $\frac{4\left(a^{3}-b^{3}\right)}{a b}$.
46. Find the approximate values of the roots of the equation $x e^{x}=2$ to within 0.01 . Ans. The equation has only one real moot, $x \approx 0.84$.
47. Find the approximate values of the roots of the equation $x \ln x=0.8$ to within 0.01. Ans. The equation has only one real root, $x \approx 1.64$.
48. Find the approximate values of the roots of the equation $x^{2} \arctan x=1$ to within 0.001 . Ans. The equation has only one real root, $x \approx 1.096$.

