Lesson 28 (even problems must be solved in class, odd examples must be solved at home)

Find the curvature of the curves at the indicated points:

1. $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$ at the points $(0, b)$ and ($a, 0$). Ans. $\frac{b}{a^{2}}$ at $(0, b)$; $\frac{a}{b^{2}}$ at (a, 0). 2. $x y=12$ at the point (3, 4). Ans. $\frac{24}{125}$. 3. $y=x^{3}$ at the point $\left(x_{1}, y_{1}\right)$. Ans. $\frac{6 x_{1}}{\left(1+9 x_{1}^{4}\right)^{3 / 2}} .4 .16 y^{2}=4 x^{4}-x^{4}$ at the point $(2,0)$. Ans. $\frac{1}{2}$. 5. $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at an arbitrary point. Ans. $\frac{1}{3 \sqrt[3]{|a x y|}}$.

Find the radius of curvature of the following curves at the indicated points; draw each curve and construct the appropriate circle of curvature:
6. $y^{2}=x^{3}$ at the point (4, 8). Ans. $R=\frac{80 \sqrt{\overline{10}}}{3}$. 7. $x^{2}=4 a y$ at the point $(0,0)$. Ans. $R=2 a .8 . b^{2} x^{2}-a^{2} y^{2}=a^{2} b^{2}$ at the point $\left(x_{1}, y_{1}\right)$. Ans. $R=\frac{\left(b^{4} x_{1}+a^{4} y_{1}\right)^{3 / 2}}{a^{4} b^{4}}$. 9. $y=\ln x$ at the point $(1,0)$. Ans. $R=2 \sqrt{2} .10 . y=\sin x$ at the point $\left(\frac{\pi}{2}, 1\right)$. Ans. $R=1$. 11. $\left.\begin{array}{l}x=a \cos ^{3} t \\ y=a \sin ^{3} t\end{array}\right\}$ for $t=t_{1}$. Ans. $R=3 a \sin t_{1} \cos t_{1}$.

Find the radius of curvature of the indicated curves:
12. $\left.\begin{array}{l}x=3 t^{2} \\ y=3 t-t^{3}\end{array}\right\}$ for $t=1$. Ans. $R=6$. 13. Circle $\rho=a \sin \theta$. Ans. $R=\frac{a}{2}$. 14. Spiral of Archimedes $\rho=a \theta$. Ans. $R=\frac{\left(\rho^{2}+a^{2}\right)^{3 / 2}}{\rho^{2}+2 a^{2}}$. 15. Cardioid $\rho=$ $=a(1-\cos \theta)$. Ans. $R=\frac{2}{3} \sqrt{2 a \rho}$. 16. Lemniscate $\rho^{2}=a^{2} \cos 2 \theta$. Ans. $R=\frac{a^{2}}{3 \rho}$. 17. Parabola $\rho=a \sec ^{2} \frac{\theta}{2}$. Ans. $R=2 a \sec ^{3} \frac{\theta}{2}$. 18. $\rho=a \sin ^{3} \frac{\theta}{3}$. Ans. $R=$ $=\frac{3}{4} a \sin ^{2}{ }_{3}^{\theta}$.

Find the points of the curves at which the radius of curvature is a minimum:
19. $y=\ln x$. Ans. $\left(\frac{\sqrt{2}}{2},-\frac{1}{2} \ln 2\right)$. 20. $y=e^{x}$. Ans. $\left(-\frac{1}{2} \ln 2, \frac{\sqrt{2}}{2}\right)$. 21. $\sqrt{x}+\sqrt{y}=\sqrt{a}$. Ans. $\left(\frac{a}{4}, \frac{a}{4}\right) \cdot$ 22. $y=a \ln \left(1-\frac{x^{2}}{a^{2}}\right)$. Ans. At the point $(0,0) R=\frac{a}{2}$.

Find the coordinates of the centre of curvature (α, β) and the equation of the evolute for each of the following curves:
23. $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Ans. $\alpha=\frac{\left(a^{2}+b^{2}\right) x^{3}}{a^{4}}, \beta=-\frac{\left(a^{2}+b^{2}\right) y^{3}}{b^{4}}$. 24. $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$. Ans. $\alpha=x+3 x^{\frac{1}{3}} y^{\frac{2}{3}}, \beta=y+3 x^{\frac{2}{3}} y^{\frac{1}{3}} . \quad$ 25. $\quad y^{3}=a^{2} x$. Ans. $\alpha=\frac{a^{4}+15 y^{4}}{6 a^{2} y}$, $\beta=\frac{a^{4} y-9 y^{5}}{2 a^{4}} . \quad 26 . \quad\left\{\begin{array}{l}x=3 t, \\ y=t^{2}-6 .\end{array}\right.$

Ans. $\quad \alpha=-\frac{4}{3} t^{3}, \quad \beta=3 t^{2}-\frac{3}{2}$.
27. $\left\{\begin{array}{l}x=k \ln \cot \frac{t}{2}-k \cos t, \\ y=k \sin t .\end{array} \quad\right.$ Ans. $y=\frac{k}{2}\left(e^{\frac{x}{k}}+e^{-\frac{x}{k}}\right) \quad$ (tractrix).
28. $\left\{\begin{array}{l}x=a(\cos t+t \sin t), \\ y=a(\sin t-t \cos t) .\end{array}\right.$ Ans. $\alpha=a \cos t, \quad \beta=a \sin t . \quad$ 29. $\left\{\begin{array}{l}x=a \cos ^{3} t, \\ y=a \sin ^{3} t .\end{array}\right.$

Ans. $\alpha=a \cos ^{3} t+3 a \cos t \sin ^{2} t, \beta=a \sin ^{3} t+3 a \cos ^{2} t \sin t$.
30 . Find the roots of the equation $x^{3}-4 x+2=0$ to three decimal places. Ans. $x_{1}=1.675, x_{2}=0.539, x_{3}=-2.214$.
31. For the equation $f(x)=x^{3}-x-0.2=0$, approximate the root in the interval (1, 1.1). Ans. 1.045.
32. Evaluate the roots of the equation $x^{4}+2 x^{2}-6 x+2=0$ to two decimal places. Ans. $0.38<x_{1}<0.39,1.24<x_{2}<1.25$.
33. Solve the equation $x^{3}-5=0$ approximately. Ans. $x_{1} \approx 1.71, x_{2,3}=$ $=1.71 \frac{-1 \pm i \sqrt{3}}{2}$.
34. Approximate the root of the equation $x-\tan x=0$ lying between 0 and $\frac{3 \pi}{2}$. Ans. 4.4935.
35. Compute the root of the equation $\sin x=1-x$ to three places of decimals. Hint. Reduce the equation to the form $f(x)=0$. Ans. $0.5110<x<0.5111$.

