Lesson 25 (even problems must be solved in class, odd examples must be solved at home)

Determine the points of inflection and the intervals of convexity and con-

cavity of the following curves:

62. $y = x^5$. Ans. For x < 0 the curve is convex; for x > 0 the curve is concave; at x=0 there is a point of inflection. 63. $y=1-x^2$. Ans. The curve is everywhere convex. 64. $y=x^3-3x^2-9x+9$. Ans. Point of inflection at x=1. 65. $y = (x-b)^3$. Ans. Point of inflection at x=b. 66. $y=x^4$. Ans. The curve is everywhere concave. 67. $y = \frac{1}{x^2 + 1}$. Ans. Point of inflection at $x = \pm 1$ $\pm \frac{1}{\sqrt{3}}$. 68. $y = \tan x$. Ans. Point of inflection at $x = n\pi$. 69. $y = xe^{-x}$. Ans.

Point of inflection at x=2. 70. $y=a-\sqrt[3]{x-b}$. Ans. Point of inflection at x=b. 71. $y=a-\sqrt[5]{(x-b)^2}$. Ans. The curve has no point of inflection. Find the asymptotes to the following curves:

72.
$$y = \frac{1}{x-1}$$
. Ans. $x = 1$, $y = 0$. 73. $y = \frac{1}{(x+2)^3}$. Ans. $x = -2$, $y = 0$. 74. $y = c + \frac{a^3}{(x-b)^2}$. Ans. $x = b$, $y = c$. 75. $y = e^{\frac{1}{x}} - 1$. Ans. $x = 0$, $y = 0$. 76. $y = \ln x$. Ans. $x = 0$. 77. $y^3 = 6x^2 + x^3$. Ans. $y = x + 2$. 78. $y^3 = a^3 - x^3$. Ans. $y + x = 0$. 79. $y^2 = \frac{x^3}{2a-x}$. Ans. $x = 2a$. 80. $y^2(x-2a) = x^3 - a^3$. Ans. $x = 2a$, $y = \pm (x+a)$.