Lesson 24 (even problems must be solved in class, odd examples must be solved at home)

Find the extrema of the functions:

1. $y=x^{2}-2 x+3$. Ans. $y_{\text {min }}=2$ at $x=1$. 2. $y=\frac{x^{3}}{3}-2 x^{2}+3 x+1$. Ans. $y_{\text {max }}=\frac{7}{3}$ at $x=1, y_{\text {min }}=1$ at $x=3$. 3. $y=x^{3}-9 x^{2}+15 x+3$. Ans. $y_{\max }=10$ at $x=1, y_{\text {min }}=-22$ at $x=5$. 4. $y=-x^{4}+2 x^{2}$. Ans. $y_{\max }=1$ at $x= \pm 1$, $y_{\text {min }}=0$ at $x=0$. 5. $y=x^{4}-8 x^{2}+2$. Ans. $y_{\text {max }}=2$ at $x=0, y_{\text {min }}=-14$ at $x= \pm 2$. 6. $y=3 x^{5}-125 x^{3}+2160 x$. Ans. Maximum at $x=-4$ and $x=3$, minimum at $x=-3$ and $x=4$. 7. $y=2-(x-1)^{\frac{2}{3}}$. Ans. $y_{\text {max }}=2$ at $x=1$. 8. $y=3-2(x+1)^{\frac{1}{3}}$. Ans. There is neither maximum nor minimum. 9. $y=$ $=\frac{x^{2}-3 x+2}{x^{2}+3 x+2}$. Ans. Minimum at $x=\sqrt{2}$, maximum at $x=-\sqrt{2}$. 10. $y=$ $=\frac{(x-2)(3-x)}{x^{2}}$. Ans. Maximum at $x=\frac{12}{5}$. 11. $y=2 e^{x}+e^{-x}$. Ans. Minimum at $x=-\frac{\ln 2}{2} . \quad$ 12. $y=\frac{x}{\ln x} . \quad$ Ans. $\quad y_{\min }=e$ at $x=e . \quad$ 13. $y=\cos x+$ $+\sin x\left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)$. Ans. $y_{\max }=\sqrt{2}$ at $x=\frac{\pi}{4} . \quad$ 14. $y=\sin 2 x-$ $-x\left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)$. Ans. Maximum at $x=\frac{\pi}{6}$, minimum at $x=-\frac{\pi}{6}$. 15. $y=x+\tan x$. Ans. There is neither maximum nor minimum. 16. $y=e^{x} \sin x$. Ans. Minimum at $x=2 k \pi-\frac{\pi}{4}$, maximum at $x=2 k \pi+\frac{3}{4} \pi$. 17. $y=x^{4}-$ $-2 x^{2}+2$. Ans. Maximum at $x=0$, two minima when $x=-1$ and when $x=1$. 18. $y=(x-2)^{3}(2 x+1)$. Ans. $y_{\text {min }} \approx-8.24$ when $x=\frac{1}{8}$. 19. $y=x+\frac{1}{x}$. Ans. Minimum when $x=1$, maximum when $x=-1$. 20. $y=x^{2}(a-x)^{2}$. Ans. $y_{\text {max }}=\frac{a^{4}}{16}$ when $x=\frac{a}{2}, y_{\text {min }}=0$ when $x=0$ and when $x=a$. 21. $y=\frac{a^{2}}{x}+$ $+\frac{b^{2}}{a-x}$. Ans. Maximum when $x=\frac{a^{2}}{a-b}$, minimum when $x=\frac{a^{2}}{a+b}$. 22. $y=$ $=x+\sqrt{1-x}$. Ans. $y_{\max }=\frac{5}{4}$ when $x=\frac{3}{4}, y_{\min }=1$ when $x=1$. 23. $y=$ $=x \sqrt{1-x} \quad(x \leqslant 1)$. Ans. $y_{\text {max }}=\frac{2}{3} \sqrt{\frac{1}{3}}$ when $x=\frac{2}{3} . \quad$ 24. $y=\frac{x}{1+x^{2}}$. Ans. Minimum when $x=-1$, maximum when $x=1$. 25. $y=x \ln x$. Ans. Minimum when $x=\frac{1}{e}$. 26. $y=x \ln ^{2} x$. Ans. $y_{\max }=4 e^{-2}$ at $x=e^{-2}, y_{\min }=0$ at $x=1$. 27. $y=\ln x-\arctan x$. Ans. The function increases. 28. $y=\sin 3 x-3 \sin x$. Ans. Minimum when $x=\frac{\pi}{2}$, maximum when $x=\frac{3 \pi}{2}, 29 . y=2 x+\arctan x$. Ans. No extrema.. 30. $y=\sin x \cos ^{2} x$. Ans. Minimum when $x=\frac{\pi}{2}$, two maxima
when $x=\arccos \sqrt{\frac{2}{3}}$ and when $x=\arccos \left(-\sqrt{\frac{2}{3}}\right)$. 31. $y=\arcsin (\sin x)$. Ans. Maximum when $x=\frac{(4 m+1) \pi}{2}$, minimum when $x=\frac{(4 m+3) \pi}{2}$.

Find the maximum and minimum values of the function on the indicated intervals:
32. $y=-3 x^{4}+6 x^{2}-1(-2 \leqslant x \leqslant 2)$. Ans. Maximum $y=2$ at $x= \pm 1$, minimum $y=-25$ at $x= \pm 2$. 33. $y=\frac{x^{3}}{3}-2 x^{2}+3 x+1 \quad(-1 \leqslant x \leqslant 5)$. Ans. Maximum value $y=\frac{23}{3}$ at $x=5$, minimum value $y=-\frac{13}{3}$ at $x=-1$. 34. $y=\frac{x-1}{x+1}$ $(0 \leqslant x \leqslant 4)$. Ans. Maximum value $y=\frac{3}{5}$ at $x=4$, minimum value $y=-1$ at $x=0$. 35. $y=\sin 2 x-x\left(-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}\right)$. Ans. Maximum value $y=\frac{\pi}{2}$ at $x=-\frac{\pi}{2}$, minimum value $y=-\frac{\pi}{2}$ at $x=\frac{\pi}{2}$.

