Lesson 24 (even problems must be solved in class, odd examples must be solved at home)

Find the extrema of the functions:

1. $y = x^2 - 2x + 3$. Ans. $y_{\min} = 2$ at x = 1. 2. $y = \frac{x^3}{3} - 2x^2 + 3x + 1$. Ans. $y_{\text{max}} = \frac{7}{3}$ at x = 1, $y_{\text{min}} = 1$ at x = 3. 3. $y = x^3 - 9x^2 + 15x + 3$. Ans. $y_{\text{max}} = 10$ at x = 1, $y_{\min} = -22$ at x = 5. 4. $y = -x^4 + 2x^2$. Ans. $y_{\max} = 1$ at $x = \pm 1$, $y_{\min} = 0$ at x = 0. 5. $y = x^4 - 8x^2 + 2$. Ans. $y_{\max} = 2$ at x = 0, $y_{\min} = -14$ at $x = \pm 2$. 6. $y = 3x^5 - 125x^3 + 2160x$. Ans. Maximum at x = -4 and x = 3, minimum at x = -3 and x = 4. 7. $y = 2 - (x - 1)^{\frac{2}{3}}$. Ans. $y_{max} = 2$ at x = 1. 8. $y=3-2(x+1)^{\frac{1}{3}}$. Ans. There is neither maximum nor minimum. 9. y= $=\frac{x^2-3x+2}{x^2+3x+2}$. Ans. Minimum at $x=\sqrt{2}$, maximum at $x=-\sqrt{2}$. 10. y= $=\frac{(x-2)(3-x)}{x^2}$. Ans. Maximum at $x=\frac{12}{5}$. 11. $y=2e^x+e^{-x}$. Ans. Minimum at $x = -\frac{\ln 2}{2}$. 12. $y = \frac{x}{\ln x}$. Ans. $y_{\min} = e$ at x = e. 13. $y = \cos x + \frac{1}{2} \cos x +$ $+\sin x\left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$. Ans. $y_{\max} = \sqrt{2}$ at $x = \frac{\pi}{4}$. 14. $y = \sin 2x - \frac{\pi}{4}$. $-x\left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$. Ans. Maximum at $x = \frac{\pi}{6}$, minimum at $x = -\frac{\pi}{6}$. 15. $y = x + \tan x$. Ans. There is neither maximum nor minimum. 16. $y = e^x \sin x$. Ans. Minimum at $x = 2k\pi - \frac{\pi}{4}$, maximum at $x = 2k\pi + \frac{3}{4}\pi$. 17. $y = x^4 - \frac{\pi}{4}$ $-2x^2+2$. Ans. Maximum at x=0, two minima when x=-1 and when x=1. 18. $y = (x-2)^3 (2x+1)$. Ans. $y_{\min} \approx -8.24$ when $x = \frac{1}{8}$. 19. $y = x + \frac{1}{x}$. Ans. Minimum when x = 1, maximum when x = -1. 20. $y = x^2 (a - x)^2$. Ans. $y_{\text{max}} = \frac{a^4}{16}$ when $x = \frac{a}{2}$, $y_{\text{min}} = 0$ when x = 0 and when x = a. 21. $y = \frac{a^2}{x} + \frac{a^2}{x}$ $+\frac{b^2}{a-x}$. Ans. Maximum when $x=\frac{a^2}{a-b}$, minimum when $x=\frac{a^2}{a+b}$. 22. y= $= x + \sqrt{1-x}$. Ans. $y_{max} = \frac{5}{4}$ when $x = \frac{3}{4}$, $y_{mln} = 1$ when x = 1. 23. y = 1 $= x \sqrt{1-x}$ (x < 1). Ans. $y_{max} = \frac{2}{3} \sqrt{\frac{1}{3}}$ when $x = \frac{2}{3}$. 24. $y = \frac{x}{1+x^2}$. Ans. Minimum when x = -1, maximum when x = 1. 25. $y = x \ln x$. Ans. Minimum when $x = \frac{1}{e}$. 26. $y = x \ln^2 x$. Ans. $y_{max} = 4e^{-2}$ at $x = e^{-2}$, $y_{min} = 0$ at x=1. 27. $y=\ln x$ - arctan x. Ans. The function increases. 28. $y=\sin 3x-3\sin x$. Ans. Minimum when $x = \frac{\pi}{2}$, maximum when $x = \frac{3\pi}{2}$. 29. $y = 2x + \arctan x$. Ans. No extrema. 30. $y = \sin x \cos^2 x$. Ans. Minimum when $x = \frac{\pi}{2}$, two maxima

when $x = \arccos \sqrt{\frac{2}{3}}$ and when $x = \arccos \left(-\sqrt{\frac{2}{3}}\right)$. 31. $y = \arcsin(\sin x)$. Ans. Maximum when $x = \frac{(4m+1)\pi}{2}$, minimum when $x = \frac{(4m+3)\pi}{2}$. Find the maximum and minimum values of the function on the indicated intervals: 32. $y = -3x^4 + 6x^2 - 1$ ($-2 \le x \le 2$). Ans. Maximum y = 2 at $x = \pm 1$, minimum y = -25 at $x = \pm 2$. 33. $y = \frac{x^3}{3} - 2x^2 + 3x + 1$ ($-1 \le x \le 5$). Ans. Maximum value $y = \frac{23}{3}$ at x = 5, minimum value $y = -\frac{13}{3}$ at x = -1. 34. $y = \frac{x-1}{x+1}$ ($0 \le x \le 4$). Ans. Maximum value $y = \frac{3}{5}$ at x = 4, minimum value y = -1at x = 0. 35. $y = \sin 2x - x \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2}\right)$. Ans. Maximum value $y = \frac{\pi}{2}$ at $x = -\frac{\pi}{2}$, minimum value $y = -\frac{\pi}{2}$ at $x = \frac{\pi}{2}$.