Lesson 22 (even problems must be solved in class, odd examples must be solved at home)

53. Expand, in powers of x-2, the polyno-

mial $x^4 - 5x^3 + 5x^2 + x + 2$. Ans. $-7 (x-2) - (x-2)^2 + 3(x-2)^3 + (x-2)^4$. 54. Expand, in powers of x+1, the polynomial $x^5 + 2x^4 - x^2 + x + 1$. Ans. $(x+1)^2 + 2 (x+1)^3 - 3 (x+1)^4 + (x+1)^5$. 55. Write Taylor's formula for the function $y = \sqrt{x}$ when a = 1, n = 3. Ans. $\sqrt{x} = 1 + \frac{x-1}{1} \cdot \frac{1}{2} - \frac{(x-1)^2}{1 \cdot 2} \cdot \frac{1}{4} + \frac{(x-1)^3}{1 \cdot 2 \cdot 3} \cdot \frac{3}{8} - \frac{(x-1)^4}{4!} \cdot \frac{15}{16} \cdot [1 + \theta(x-1)]^{-\frac{7}{2}}$, $0 < \theta < 1$. 56. Write the Maclaurin formula for the function $y = \sqrt{1+x}$ when n = 2. Ans. $\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{x^3}{16}$, $0 < \theta < 1$. 57. Using the results of the preced- $16 (1 + \theta x)^{\frac{5}{2}}$

ing exercise, estimate the error of the approximate equation $\sqrt{1+x} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2$ when x = 0.2. Ans. Less than $\frac{1}{2 \cdot 10^3}$.

Determine the origin of the approximate equations for small values of x and estimate the errors of these equations: 58. $\ln \cos x \approx -\frac{x^2}{2} - \frac{x^4}{12}$. 59. $\tan x \approx x + \frac{x^3}{3} + \frac{2x^5}{15}$. 60. $\arcsin x \approx x + \frac{x^3}{6}$. 61. $\arctan x \approx x - \frac{x^3}{3}$. 62. $\frac{e^x + e^{-x}}{2} \approx 1 + \frac{x^2}{2} + \frac{x^4}{24}$. 63. $\ln (x + \sqrt{1-x^2}) \approx x - x^2 + \frac{5x^3}{6}$.

Using Taylor's formula, compute the limits of the following expressions: 64. $\lim_{x \to 0} \frac{x - \sin x}{e^x - 1 - x - \frac{x^2}{2}}$. Ans. 1. 65. $\lim_{x \to 0} \frac{\ln^2 (1 + x) - \sin^2 x}{1 - e^{-x^2}}$. Ans. 0. 66. $\lim_{x \to 0} \frac{2 (\tan x - \sin x) - x^3}{e^x - 1 - x^2}$. Ans. 1. 67. $\lim_{x \to 0} \left[x - x^2 \ln \left(1 + \frac{1}{x} \right) \right]$. Ans. 0.

66.
$$\lim_{x \to 0} \frac{1}{x^5} + \frac{$$