Lesson 22 (even problems must be solved in class, odd examples must be solved at home)

53. Expand, in powers of $x-2$, the polyno-
mial $\quad x^{4}-5 x^{3}+5 x^{2}+x+2$. Ans. $\quad-7(x-2)-(x-2)^{2}+3(x-2)^{3}+(x-2)^{4}$. 54. Expand, in powers of $x+1$, the polynomial $x^{5}+2 x^{4}-x^{2}+x+1$. Ans. $(x+1)^{2}+2(x+1)^{3}-3(x+1)^{4}+(x+1)^{5}$. 55. Write Taylor's formula for the function $y=\sqrt{x}$ when $a=1, n=3$. Ans. $\sqrt{\bar{x}}=1+\frac{x-1}{1} \cdot \frac{1}{2}-\frac{(x-1)^{2}}{1 \cdot 2} \cdot \frac{1}{4}+$ $+\frac{(x-1)^{3}}{1 \cdot 2 \cdot 3} \cdot \frac{3}{8}-\frac{(x-1)^{4}}{4!} \cdot \frac{15}{16} \cdot[1+\theta(x-1)]^{-\frac{7}{2}}, 0<\theta<1$. 56. Write the Maclaurin formula for the function $y=\sqrt{1+x}$ when $n=2$. Ans. $\sqrt{1+x}=1+$ $+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{x^{3}}{16(1+\theta x)^{\frac{5}{2}}}, 0<\theta<1$. 57. Using the results of the preceding exercise, estimate the error of the approximate equation $\sqrt{1+x} \approx$ $\approx 1+\frac{1}{2} x-\frac{1}{8} x^{2}$ when $x=0.2$. Ans. Less than $\frac{1}{2 \cdot 10^{3}}$.

Determine the origin of the approximate equations for small values of x and estimate the errors of these equations: 58. $\ln \cos x \approx-\frac{x^{2}}{2}-\frac{x^{4}}{12}$. 59. $\tan x \approx x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15} . \quad$ 60. $\quad \arcsin x \approx x+\frac{x^{3}}{6} . \quad$ 61. $\quad \arctan x \approx x-\frac{x^{3}}{3}$.
62. $\frac{e^{x}+e^{-x}}{2} \approx 1+\frac{x^{2}}{2}+\frac{x^{4}}{24}$. 63. $\ln \left(x+\sqrt{1-x^{2}}\right) \approx x-x^{2}+\frac{5 x^{3}}{6}$.

Using Taylor's formula, compute the limits of the following expressions:
64. $\lim _{x \rightarrow 0} \frac{x-\sin x}{e^{x}-1-x-\frac{x^{2}}{2}}$. Ans. 1. 65. $\lim _{x \rightarrow 0} \frac{\ln ^{2}(1+x)-\sin ^{2} x}{1-e^{-x^{2}}}$. Ans. 0 .
66. $\lim _{x \rightarrow 0} \frac{2(\tan x-\sin x)-x^{3}}{x^{5}}$. Ans. $\frac{1}{4}$. 67. $\lim _{x \rightarrow 0}\left[x-x^{2} \ln \left(1+\frac{1}{x}\right)\right]$. Ans. 0 .
68. $\lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{\cot x}{x}\right)$. Ans. $\frac{1}{3}$. 69. $\operatorname{iim}_{x \rightarrow 0}\left(\frac{1}{x^{2}}-\cot ^{2} x\right)$. Ans. $\frac{2}{3}$.

