Lesson 17 (even problems must be solved in class, odd examples must be solved at home)

Equations of a Tangent and a Normal. Lengths of a Subtangent and a Subnormal

207. Write the equations of the tangent and the normal to the curve $y = x^3 - 3x^2 - x + 5$ at the point M (3, 2). Ans. The tangent is 8x - y - 22 = 0;

the normal, x + 8y - 19 = 0.

208. Find the equations of the tangent and normal, the lengths of the subtangent and subnormal of the circle $x^2 + y^2 = r^2$ at the point $M(x_1, y_1)$. Ans. The tangent is $xx_1 + yy_1 = r^2$; the normal is $x_1y - y_1x = 0$; $S_T = \left| \frac{y_1^2}{x_1} \right|$; $S_N = |x_1|$.

209. Show that the subtangent of the parabola $y^2 = 4px$ at any point is divided into two by the vertex, and the subnormal is constant and equal to 2p. Make a drawing.

210. Find the equation of the tangent at the point $M(x_1, y_1)$

(a) to the ellipse
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
. Ans. $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$;

(b) to the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
. Ans. $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$.

- 211. Find the equations of the tangent and normal to the Witch of Agnesi $y = \frac{8a^3}{4a^2 + x^2}$ at the point where x = 2a. Ans. The tangent is x + 2y = 4a; the normal is y = 2x - 3a.
- 212. Show that the normal to the curve $3y = 6x 5x^3$ drawn to the point $M\left(1,\frac{1}{3}\right)$ passes through the coordinate origin.
- 213. Show that the tangent to the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ at the point M(a, b) is $\frac{x}{a} + \frac{y}{b} = 2$.
- 214. Find the equation of that tangent to the parabola, $y^2 = 20x$, which forms an angle of 45° with the x-axis. Ans. y = x + 5 [at the point (5, 10)]. 215. Find the equations of those tangents to the circle $x^2 + y^2 = 52$ which are parallel to the straight line 2x + 3y = 6. Ans. $2x + 3y \pm 26 = 0$.

- 216. Find the equations of those tangents to the hyperbola $4x^2-9y^2=36$ which are perpendicular to the straight line 2y + 5x = 10. Ans. There are no such tangents.
- 217. Show that the segment (lying between the coordinate axes) of the tangent to the hyperbola xy = m is divided into two by the point of tangency.
- 218. Prove that the segment (between the coordinate axes) of a tangent to the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ is of constant length.

219. At what angle α do the curves $y = a^x$ and $y = b^x$ intersect? Ans. ln *a* --- ln *b* $\tan \alpha = \frac{1}{1 + \ln a \cdot \ln b}.$

220. Find the lengths of the subtangent, subnormal, tangent and normal to the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ at the point at which $\theta = \frac{\pi}{2}$.

Ans. $S_T = a$, $S_N = a$, $T = a \sqrt{2}$, $N = a \sqrt{2}$. 221. Find the quantities S_T , S_N , T and N for the astroid $x = 4a \cos^3 t$, $y = 4a \sin^3 t$. Ans. $S_T = |4a \sin^2 t| \cos t$; $S_N = |4a \sin^3 t| \tan t$; $T = 4a \sin^2 t$; $N = |4a \sin^2 t| \tan t$.