Lesson 16 (even problems must be solved in class, odd examples must be solved at home)

186. $y = \cos ax$. Find $y^{(n)}$. Ans. $a^n \cos \left(ax + n\frac{\pi}{2}\right)$.

187. $y = a^x$. Find $y^{(n)}$. Ans. $(\ln a)^n a^x$. 188. $y = \ln (1+x)$. Find $y^{(n)}$. Ans. $(-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$. 189. $y = \frac{1-x}{1+x}$. Find $y^{(n)}$. Ans. $2(-1)^n \frac{n!}{(1+x)^{n+1}}$. 190. $y = e^x x$. Find $y^{(n)}$. Ans. $e^x (x+n)$. 191. $y = x^{n-1} \ln x$. Find $y^{(n)}$. Ans. $\frac{(n-1)!}{x}$.

192. $y = \sin^2 x$. Find $y^{(n)}$. Ans. $-2^{n-1}\cos\left(2x + n\frac{\pi}{2}\right)$. 193. $y = x\sin x$. Find $y^{(n)}$. Ans. $x \sin\left(x + n\frac{\pi}{2}\right) - n\cos\left(x + n\frac{\pi}{2}\right)$. 194. If $y = e^x \sin x$, prove that $y^x - 2y' + 2y = 0$. 195. $y^2 = 4ax$. Find $\frac{d^3y}{dx^2}$. Ans. $-\frac{4a^2}{y^3}$. 196. $b^2x^2 + a^2y^2 - a^2b^2$. Find $\frac{d^3y}{dx^2}$ and $\frac{d^3y}{dx^3}$. Ans. $-\frac{b^4}{a^2y^3}$. 197. $x^2 + y^2 = r^2$. Find $\frac{d^3y}{dx^2}$. Ans. $-\frac{r^2}{y^3}$. 198. $y^3 - 2xy = 0$. Find $\frac{d^3y}{dx^3}$. Ans. 0. 199. $\rho = \tan (\varphi + \rho)$. Find $\frac{d^3\rho}{d\varphi^3}$. Ans. $-\frac{2(5+8\rho^2+3\rho^4)}{\rho^5}$. 200. $\sec \varphi \cos \rho = C$. Find $\frac{d^2\rho}{d\varphi^2}$. Ans. $\frac{\tan^2\rho - \tan^2\varphi}{\tan^3\rho}$. 201. $e^x + x = e^y + y$. Find $\frac{d^2y}{dx^2}$. Ans. $\frac{(1-e^{x+y})(e^x - e^y)}{(e^y + 1)^3}$. 202. $y^3 + x^3 - 3axy = 0$. Find $\frac{d^2y}{dx^2}$. Ans. $-\frac{2a^3xy}{(y^2 - ax)^3}$. 203. $x = a(t - \sin t)$, $y = a(1 - \cos t)$. Find $\frac{d^3y}{dx^2}$. Ans. $-\frac{1}{4a\sin^4\left(\frac{t}{2}\right)}$. 204. $x = a\cos 2t$, $y = b\sin^2 t$. Show that $\frac{d^2y}{dx^2} = 0$. 205. $x = a\cos t$, $y = a\sin t$. Find $\frac{d^3y}{dx^3}$. Ans. $-\frac{3\cos t}{a^2\sin^5 t}$. 206. Show that $\frac{d^2n}{dx^2}$ ($\sin h(x) = \sinh x$; $\frac{d^2n+1}{dx^2n+1}$ ($\sinh x$) $= \cosh x$.