Lesson 13 (even problems must be solved in class, odd examples must be solved at home)

Find the derivatives of the following functions after first taking logarithms of the functions:
Ans. $y^{\prime}=\frac{1}{\sqrt{a^{2}-x^{2}}}$.
117. $y=(\arcsin x)^{2}$.
116. $y=\arcsin \frac{x}{a}$.

Ans. $y^{\prime}=\frac{2 \arcsin x}{\sqrt{1-x^{2}}}$.
118. $y=\arctan \left(x^{2}+1\right) . \quad$ Ans. $y^{\prime}=\frac{2 x}{1+\left(x^{2}+1\right)^{2}}$.
119. $y=\arctan \frac{2 x}{1-x^{2}}$.

Ans. $y^{\prime}=\frac{2}{1+x^{2}}$. 120. $y=\arccos \left(x^{2}\right)$. Ans. $y^{\prime}=\frac{-2 x}{\sqrt{1-x^{4}}}$. 121. $y=\frac{\arccos x}{x}$.
Ans. $y^{\prime}=\frac{-\left(x+\sqrt{1-x^{2}} \arccos x\right)}{x^{2} \sqrt{1-x^{2}}} . \quad$ 122. $y=\arcsin \frac{x+1}{\sqrt{2}} . \quad$ Ans. $y^{\prime}=$ $\therefore \frac{1}{\sqrt{1-2 x-x^{2}}} \quad$ 123. $y=x \sqrt{a^{2}-x^{2}}+a^{2} \arcsin \frac{x}{a} . \quad$ Ans. $y^{\prime}=2 \sqrt{a^{2}-x^{2}}$.
124. $y=\sqrt{a^{2}-x^{2}}+a \arcsin \frac{x}{a}$. Ans. $y^{\prime}=\sqrt{\frac{a-x}{a+x}} . \quad$ 125. $u=\arctan \frac{v+a}{1-a v}$. Ans. $\frac{d u}{d v}=\frac{1}{1+v^{2}}, \quad$ 126. $y=\frac{1}{\sqrt{3}} \arctan \frac{x \sqrt{3}}{1-x^{2}} . \quad$ Ans. $\quad y^{\prime}=\frac{x^{2}+1}{x^{4}+x^{2}+1} . \quad 127$. $y=x \arcsin x . \quad$ Ans. $y^{\prime}=\arcsin x+\frac{x}{\sqrt{1-x^{2}}}$. 128. $f(x)=\arccos (\ln x) . \quad$ Ans. $f^{\prime}(x)=-\frac{1}{x \sqrt{1-\ln ^{2} x}}$. 129. $f(x)=\arcsin \sqrt{\sin x}$. Ans. $f^{\prime}(x)=\frac{\cos x}{2 \sqrt{\sin x-\sin ^{2} x}}$. 130. $y=\arctan \sqrt{\frac{1-\cos x}{1+\cos x}}(0 \leqslant x<\pi)$. Ans. $y^{\prime}=\frac{1}{2} . \quad$ 131. $y=e^{\arctan x}$. Ans. $y^{\prime}=\frac{e^{\arctan x}}{1+x^{2}}$. 132. $y=\arctan \frac{e^{x}-e^{-x}}{2}$. Ans. $y^{\prime}=\frac{2}{e^{x}+e^{-x}}$. 133. $y=$ $=x^{\arcsin x}$. Ans. $y^{\prime}=x^{\arcsin x}\left(\frac{\arcsin x}{x}+\frac{\ln x}{\sqrt{1-x^{2}}}\right)$. 134. $y=\arcsin (\sin x)$. Ans. $y^{\prime}=\frac{\cos x}{|\cos x|}=\left\{\begin{array}{l}+1 \text { in 1st and 4th quadrants. 135. } y=\arctan \frac{4 \sin x}{3+5 \cos x} \text {. } \text {. } 1 \text { in 2nd and 3rd quadrants. } \\ -1 \text { 2 }\end{array}\right.$ Ans. $y^{\prime}=\frac{4}{5+3 \cos x}$. 136. $y=\arctan \frac{a}{x}+\ln \sqrt{\frac{x-a}{x+a}} . \quad$ Ans. $\quad y^{\prime}=\frac{2 a^{3}}{x^{4}-a^{4}}$. 137. $y=\ln \left(\frac{1+x}{1-x}\right)^{\frac{1}{4}}-\frac{1}{2} \arctan x . \quad$ Ans. $y^{\prime}=\frac{x^{2}}{1-x^{4}} . \quad$ 138. $\quad y=\frac{3 x^{2}-1}{3 x^{3}}+$ $+\ln \sqrt{1+x^{2}}+\arctan x . \quad$ Ans. $y^{\prime}=\frac{x^{5}+1}{x^{6}+x^{4}} . \quad$ 139. $y=\frac{1}{3} \ln \frac{x+1}{\sqrt{x^{2}-x+1}}+$ $+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}} . \quad$ Ans. $y^{\prime}=\frac{1}{x^{3}+1} . \quad$ 140. $y=\ln \frac{1+x \sqrt{2}+x^{2}}{1-x \sqrt{2}+x^{2}}+$ $+2 \arctan \frac{x \sqrt{2}}{1-x^{2}}$. Ans. $y^{\prime}=\frac{4 \sqrt{2}}{1+x^{4}} .141 . y=\arccos \frac{x^{2 n}-1}{x^{2 n}+1}$. Ans. $-\frac{2 n|x|^{n}}{x\left(x^{2 n}+1\right)}$.

