PARAMETRIC REPRESENTATION OF A FUNCTION
Given two equations:

x=q(f) }
Y= (f) M)

where ¢ assumes values that lie in the interval [T,, T,]. To each
value of ¢ there correspond values of x and y (the functions ¢
and ¢ are assumed to be single-valued). If one regards the values
of x and y as coordinates of a point in a coordinate xy-plane,
then to each value of ¢ there will correspond a definite point in
the plane. And when ¢ varies from T, to T,, this point will de-
scribe a certain curve. Equations (1) are
called parametric equations of this curve,
t is the parameter, and parametric is
the way the curve is represented by
equations (1).

Let us further assume that the fun-
ction x=¢ (f) has an inverse, ¢ = (x).
Then, obviously, y is a function of x;

| y=1[® (x)] (2)
0 I C T Thus, equations (1) define y as a func-
Fig. 75 tion of x, and we say that the function

y of x is represented parametrically.
The explicit expression of the dependence of y on x, y=f(x),
is obtained by eliminating the parameter ¢ from equations (1).
Parametric representation of curves is widely used in mechanics.
If in the xy-plane there is a certain material point in motion and

if we know the laws of motion of the projections of this point on
the coordinate axes, then

x=9(t) ,

_re (1)
y=9() |

where the parameter ¢ is the time. Then equations (1’) are para-

metric equations of the trajectory of the moving point. Elimina-

ting from these equations the parameter ¢, we get the equation of

the trajectory in the form y=f(x) or F(x,y)=0. By way of il-
lustration, let us take the following problem.

Problem. Determine the trajectory and point of impact of a load dropped
from an airplane moving horizontally with a velocity v, at an altitude y, (air
resistance is disregarded).

Solution. Taking a coordinate system as shown in Fig. 75, we assume that
the airplane drops the load at the instant it cuts the y-axis. It is obvious that
the horizontal translation of the load will be uniform and with constant velo-
city v,

xzvnt
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Vertical displacement of the falling load due to the force of gravity will be
expressed by the formula

2
s=2_

Hence the distance of the load from the ground at any instant will be

The two equations

are the parametric equations of the trajectory. To eliminate the parameter ¢,
we find the value t———vi from the first equation and substitute it into the second

cquation. Then we get g(he equation of the trajectory in the form

= yy—-L x8
Yy Yo 203

This is the equation of a parabola with vertex at the point M (0, y,), the
y-axis serving as the axis of symmetry of the parabola.

We determine the length of OC. Denote the abscissa of C by X, and note
that the ordinate of this point is y =0. Putting these values into the preceding
formula, we get

0= yo—‘z%dg' XZ

3.17 THE EQUATIONS OF SOME CURVES IN PARAMETRIC FORM

£ Circlae). Given a circle with centre at the coordinate origin and with radius r
(Fig. 76).
%)enote by ¢ the angle formed by the x-axis and the radius to some point
M (x, y) of the circle. Then the coordinates of any point on the circle will be
cxpresseu in terms of the parameter ¢ as follows: y A

X=rcost,
y=rsint, }0<t<2ﬂ

whence

_ M(z,9)
These are the parametric equations of the circle.

If we eliminate the parameter ¢ from these equa- r
tions, we will have an equation of the circle con-
taining only x and y. Squaring the parametric 0
cquations and adding, we get

x?+y%=r2 (cos? { | sin? ¢)

— | 'z

or
Rtyr=r Fig. 76
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Ellipse. Given the equation of the ellipse

2 2
=1 )

Set
x=acost 2"

Putting this expression into equation (1) and performing the necessary mani-
pulations, we get

y..—:.bSint (2”)
The equations
x=acost,
y="bsint, }0<t<2ﬂ (2)

are the parametric equations of the ellipse.
Let us find out the geometrical meaning of the parameter f. Draw two
circles with centres at the coordinate origin and with radii a and b (Fig. 77).
Let the point M (x, y) lie on the ellipse,
Yi and let B be a point of the large circle with
the same abscissas as M. Denote by ¢ the
angle formed by the radius OB with the
8 x-axis. From the figure it follows directly

that

M(z,y) x=0P=acost 2"
CQ=bsint

From (2") we conclude that CQ=y; in
other words, the straight line CM is parallel
to the x-axis.

Consequently, in equations (2) ¢ is an
angle formed by the radius OB and the axis
of abscissas. The angle ¢ is sometimes called

Fig. 77 an ecceniric angle.
Cycloid. The cycloid is a curve descri-
' . bed by a point lying on the circumference
of a circle if the circle rolls upon a straight line without sliding (Fig. 78).
Suppose that when motion began the point M of the rolling circle lay at the
origin. Let us determine the coordinates of M after the circle has turned through

y

Fig. 78

?}? tangle t. If a is the radius of the rolling circle, it will be seen from Fig. 78
a
x=0P=0B—PB
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but since the circle rolls without sliding, we have
OB=MB=at, PB=MK=asin

Hence, x=at —asin { =a (f —sin £).
Further,
y=MP=KB=CB—CK=a—acos{=a(l—cost)

The equations
x=a(t—sint) 0?21 3
y=a(l—cost) (3)
are the parametric equations of the cycloid. As ¢ varies between 0 and 2n, the
point M will describe one arch of the cycloid.
Eliminating the parameter ¢ from the latter equations, we get x as a function
of y directly. In the interval 0 <<t <Cm, the function y=a(l—cos ¢) has an
inverse:

t = arccos

a—y
a

Substituting the expression for ¢ into the first of equations (3), we get

a—y . a—y.
x=aarccos —=—asin | arccos —

or

- V2ay—-y2 when 0 << x<{na

a—y
X=@aarccos —

Examining the figure we note that when na<Cx<<2na

x=2na— (a arccos a-;-y_ V2ay—y“)

It will be noted that the function
x=a(t—sint)

has an inverse, but it is not expressible in terms of elementary functions. And
so the function y=f(x) is not expressible in terms of elementary functions
cither.

Note 1. The cycloid clearly shows that in certain cases it is more convenient
to use the parametric equations for studying functions and curves than the
direct relationship of y and x (y as a function of x or x as a function of y).

Astroid. The astroid is a curve represented by the following parametric
equations:

x=acosd¢

y—asind{ }o<t<2n (4)

Raising the terms of both equations to the power 2/3 and adding, we get the
following relationship between x and y:
2 2

2
x3 +y3=a3 (costt4sin?¢)
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2 2 2
%9 4y8—q3 (5)

Later on (Sec. 5.12) it will be shown that this
curve is of the form shown in Fig. 79. It can
be obtained as the trajectory of a certain point
on the circumference of a circle of radius a/4
rolling (without sliding) upon another circle of
radius a (the smaller circle always remains in-
side the larger one, see Fig. 79).

Note 2. It will be noted that equations
(4) and equation (5) define more than one func-
tion y=f (x). They define two continuous func-
) tions on the interval —a<x< 4 a. One takes
Fig. 79 onl nonnegative values, the other nonpositive
values.

THE DERIVATIVE OF A FUNCTION REPRESENTED

PARAMETRICALLY
Let a function y of x be represented by the parametric equations
x=¢(f)
J—a( | o<IST M

Let us assume that these functions have derivatives and that the
function x=¢(f) has an inverse, {=® (x), which also has a
derivative. Then the function y=Ff(x) defined by the parametric
equations may be regarded as a composite function:

y=v@), t=0()

t being the intermediate argument.
By the rule for differentiating a composite function we get

Yu=Yelx =1 (t) D5 (x) (2)

From the theorem for the differentiation of an inverse function,
it follows that

’ 1
D, (X) = ——
x (%) e

Putting this expression into (2), we have

or

=L (XXI)
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The derived formula permits finding the derivative y, of a
function represented parametrically without having to find y as

a function of x. .
Example 1. The function y of x is given by the parametric equations
: x=acost |
y=asint | O<i<a)

Find the derivative Z—i: (1) for any value of ¢; (2) for t=—4n-.
Solution.

»_(asin?)’ acost
() vx= (@acost)  —asint

’ n

@ (43), m=—cotg=—1.

Example 2. Find the slope of the tangent to the cycloid
x=a (t—sin{)
y=a(l—cos?)

at an arbitrary point (0<C? < 2m).

Solution. The slope of the tangent at each point is equal to the value of
the derivative yy at that point; i.e., it is

=24
Xt
But
xt=a(l—cosf), yr=asint
Consequently,
2sin-t—cos—-
+_asint 2 2 —coti—tan no ¢
=g (T—cost) A R R
2sin -

Hence, the slope of the tangent to a cycloid at every point is equal to tan
S%-—% , where ¢ is the value of the parameter corresponding to this point.

ut this means that the angle a of inclination of the tangent to the x-axis is
n t

equal to )

(for values of ¢ lying between —=n and =) *.

* Indeed, the slope is equal to the tangent of the angle of inclination

of the tangent to the x-axis. And so tan a=tan(£—i) and a=%__t_

2 2 2

for those values of ¢ for which —121—% lies between 0 and m.
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HYPERBOLIC FUNCTIONS
In many applications of mathematical analysis we encounter
combinations of exponential functions of the form %(e" —e~*) and
%(e" +-e~*). These combinations are regarded as new functions and
are designated as follows:

—_—p—X
sinhx=ex 28

X L p—x (1)
coshx =2 ";e

The first of these functions is called the hyperbolic sine, the

second, the hyperbolic cosine. These functions may be used to define

. . sinh x cosh x |
two more functions: tanh x = T x and cothx= b

tanhx = g:—'_-i_% , the hyperbolic tangent,
cothx = ex e ” the hyperbolic cotangent @
- exX —e—% ’ yp g

The functions sinh x, cosh x, tanh x are obviously defined for all
values of x. But the function cothx is defined everywhere, except
at the point x=0. The graphs of the hyperbolic functions are
given in Figs. 80, 81, 82.

From the definitions of the functions sinhx and coshx [formu-
las (1)] there follow relationships similar to those between the
appropriate trigonometric functions:

cosh? x—sinh*x =1 (2)
cosh (a+b) =coshacoshb-sinhasinhb 3)
sinh (a4 b) = sinh acosh b+ cosh asinh b (3)
Indeed,
cosh? x —sinh? x= (ex";e-x)s— (ex_;-x>2
— e2x +.2+e—2x_ezx+ 2—e—2x

4

Further, noting that

ed+b_| p-a-b

cosh (a+b) = 3
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we get

edf-e=0eb fe-b p0_e-aph_e-b
ety

coshacoshb-sinhasinhb = 3 5 D)

ea+b+e-a+b+ea—b+e-a—b+ea+b_e-a+b_ea; b_{ g-a-b

—_

4
ea+b_L p—~a-b

= = = cosh (a+b)

The proof is similar for relation
3).

The name “hyperbolic functions”
comes from the fact that the func-
tions sinh ¢ and cosh ¢ play the
sarmie role in the parametric
representation of the hyperbola.

x2_y2= l
N

— — — — — e G Gy et

Fig. 82

as the trigonometric functions sin ¢ and cos¢ do in the parametric
representation of the circle
Boty=1
Indeed, eliminating the parameter ¢ from the equations

x=cost, y=sint
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we get
x4 y* =cos?t 4 sin?¢
or
x*+y*=1 (the equation of the circle)

Similarly, the equations

x=cosh ¢

y=sinht
are the parametric equations of the hyperbola.

Indeed, squaring these equations termwise and subtracting the
second from the first, we get

x? —y? = cosh?® { —sinh? ¢
Since, on the basis of formula (2), the expression on the right
is equal to unity, we have
x—yr=1
which is the equation of the hyperbola.

Let us consider a circle with the equation x2+y?=1 (Fig. 83).
In the equations x =cos¢, y=sin ¢, the parameter ¢ is numerically

Fig. 83 Fig. 84

equal to the central angle AOM or to the doubled area S of the
sector AOM, since ¢t =2S.

Let it be noted, without proof, that in the parametric equations
of the hyperbola,

x=cosht
y=sinht

the parameter ¢ is also numerically equal to twice the area of the
“hyperbolic sector” AOM (Fig. 84).
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The derivatives of the hyperbolic functions are defined by the
formulas

(sinhx)’ =coshx, (tanhxJ =
cosh’ 4 (XXII)
(coshx)’ =sinhx, (cothx)' =— ST

which follow from the very definition of hyperbolic functions; for

. . . eX—e—x
instance, for the function sinhx= 5 we have

ex—e"")' __eX¥d-e-¥*

=cosh x

(sinh x)’ =( 5

THE DIFFERENTIAL

Let a function y=1[(x) be differentiable on an interval [a, b].
The derivative of this function at some point x of [a, b] is deter-
mined by the equation

lim —__f (x)

Ax-»OA

As Ax—0, the ratio 2—1 approaches a definite number f* (x) and,
consequently, differs from the derivative f' (x) by an infinitesimal:

=F ) +a

where o —0 as Ax—0.
Multiplying all terms by Ax, we get

Ay=F" (x) Ax+alAx )]

Since in the.general case f’ (x) =0, for a constant x and a variable
Ax — 0, the product f' (x)Ax is an infinitesimal of the first order
relative to Ax. But the product aAx is always an infinitesimal of
higher order than Ax because

oAx .
AlxlT o Ax ALlToa 0
Thus, the increment Ay of the function consists of two terms, of
which the first is [when f’ (x) 0] the so-called principal part of
the increment, and is linear in Ax. The product [’ (x) Ax is called
the differential of the function and is denoted by dy or df (x).
And so if a function y=f (x) has a derivative f’ (x) at the point x,
the product of the derivative f’ (x) by the increment Ax in the
argument is called the differential of the function and is denoted

by the symbol dy:
dy=f" (x)Ax @)
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Find the differential of the function y—=x; here,
y=x'=1

and, consequently, dy=dx = Ax or dx = Ax. Thus, the differential
dx of the independent variable x coincides with its increment Ax.
The equation dx = Ax might be regarded likewise as a definition
of the differential of the independent variable, and then the fore-
going example would indicate that this does not contradict the
definition of the differential of the function. In any case, we can

write formula (2) as
dy={['(x)dx

But from this relationship it follows that
’ d
f'0=2

Hence, the derivative f’(x) may be regarded as the ratio of the
differential of the function to the differential of the independent

variable.
Let us return to expression (1), which, taking (2) into account,

may be rewritten thus:
Ay=dy+aAx (3)

Thus, the increment of a function differs from the differential of
a function by an infinitesimal of higher order than Ax. If f’ (x) 0,
then aAx is an infinitesimal of higher order than dy and

. Ay . alx — . @ __
Alxullo dy : +AlxlTof' (x) Ax 1+AL1TO i

For this reason, in approximate calculations one sometimes uses

the approximate equation

Ay =~ dy 4)

or, in expanded form,

f(x+Ax)—F(x) = [' (x) Ax ()

thus reducing the amount of computation.

E);ample 1. Find the differential dy and the increment Ay of the function
y=x4

(1) for arbitrary values of x and Ax,

(2) for x=20, Ax=0.1.

Solution. (1) Ay= (x4 Ax)® —x3 =2xAx-} Ax3,

dy = (x?)’ Ax=2xAx.

(2) If x=20, Ax=0.1, then Ay=2.20-0.14-(0.1)2=4.01,
dy =2-20-0.1 = 4.00.
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glacin% Ay by dy yields an error of 0.01. In many cases, it may be con-
sldered small compared with Ay=4.01 and therefore disregarded.
Fig. 85 gives a clear picture of the above problem.

In approximate calculations, one also makes use of the following
equation, which is obtained from (5):

fx+Ax) =~ f(x)+F (x) Ax 6) VZzxbx77 A=) 4a

&
N

%
Example 2. Let f(x)=sinx, then f' (x)=cos x. %
In this case the approximate equation (6) takes %
the form x? %at
sin (x4 Ax) = sin x4 cos x Ax (7) f//}
Let us calculate the approximate value of %
® L] —
ain 46°, Put x=45 —T’ Ax=1° =180’ x+Ax= ro——
s T—l—l—sb-. Substituting into (7) we get Fig. 85

in 46° =sin (1 ) v sin T 4 cos LT
sin 46 _sm(4+180)~sm 4+cosTm

o ape 2
sin 46° = V-— + V— 120—0 70714-0.7071.0.0175=0.7191

or

Example 3. If in (7) we put x=0, Ax=a, we get the following approximate
equation:

sina ~ a

Example 4. If f(x)=tanx, then by (6) we get the following approximate
cquation:

1
tan (x4 Ax) =~ tan x4 o5t
for x=0, Ax=a, we get

tana ~ a

Example 8. If f(x)= ¥ x, then (6) yields
—_— 1
Vx+dcs=V x+ Ax
2V x
Putting x=1, Ax=a, we get the approximate equation

szl+?'a

The problem of finding the differential of a function is equiva-
lent to that of finding the derivative, since, by multiplying the
latter into the differential of the argument we get the differential
of the function. Consequently, most theorems and formulas per-
taining to derivatives are also valid for differentials. Let us illust-
rate this. _

The differential of the sum of two differentiable functions u and
v is equal to the sum of the differentials of these functions:'

d(u+v)=du+dv
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The differential of the product of two differentiable functions u
and v is determined by the formula

d(uw)=udv+vdu

By way of illustration, let us prove the latter formula. If
y=uv, then
dy=y' dx= (uv’' +vu')dx=uv’' dx 4 vu' dx
but
vVdx=dv, u'dx=du
therefore
dy=udv-+vdu

Other formulas (for instance, the formula defining the differen-
tial of a quotient) are proved in similar fashion:

if y=%, then dy='L"_2"—dv

v

Let us solve some examples in calculating the differential of a
function.

— 2 —
Example 6. y—=tan?x, dy=2tanx ot %

l .idx.

2V 1+inx X

We find the expression for the differential of a composite func-
tion. Let

Example 7. y=V 1+Inx, dy=

y=F[w), u=0(x), or y=f[p(x)]
Then by the rule for differentiating a composite function,
A AGLAC
Hence,
dy=fu.(u) @’ (x)dx
but ¢’ (x)dx=du, therefore
dy=1[" (u)du

Thus, the differential of a composite function has the same form
as it would have if the intermediate argument were the independent
variable. In other words, the form of the differential does not de-
pend on whether the argument of the function is an independent
variable or the function of another argument. This important pro-
perty of a differential, called the preservation of the form of the
differential, will be widely used later on.
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Example 8. Given a function y=sin} x. Find dy.

Solution. Representing the given function as a composite one:
y=sinu, u=Vx

we find ¢

1
dy = cos u ——— dx
Y 2Vx
1

but —
2Vx

dx=du, so we can write

dy=cos u du
or

dy=cos (V x)d(Vx).

THE GEOMETRIC MEANING OF THE DIFFERENTIAL
Let us consider the tunction

y=Ff(x)

and the curve it represents (Fig. 86).

On the curve y=f(x), take an arbitrary point M (x, y), draw a
line tangent to the curve at this point and denote by a the
angle* which the tangent line forms with the positive x-axis.
Increase the independent variable by Ax; then the function will
change by Ay=NM,. To the values x- Ax, y+ Ay on the curve
y=f(x) there will correspond the point M, (x4 Ax, y+ Ay).

From the triangle MNT we find

NT = MN tana
Since
tana =f'(x), MN=Ax
we get
NT =f'(x) Ax

But by the definition of a differential f' (x) Ax=dy. Thus,

NT =dy
The equation signifies that the differential of a function f(x), which
corresponds to the given values x and Ax, is equal to the increment

in the ordinate of the line tangent to the curve y=f(x) at the
given point x.

* Assuming that the function f(x) has a finite derivative at the point x,
we get a # -:21 .
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From Fig. 86 it follows directly that
M, T =Ay—dy

By what has already been proved, %%Z—»O as Ax —0.

Fig. 87

One should not think that the increment Ay is always greater
than dy. For instance, in Fig. 87,

Ay=M,N, dy=NT, and Ay <dy
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