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3.16 PARAMETRIC REPRESENTATION OF A FUNCTION

Given two équations:
*= ?(< ) \  

0  i
( i )

where t assumes values that lie in the interval [ r x, T,]. Toeach 
value of t there correspond values of x and y (the functions <p 
and oj) are assumed to be single-valued). If one regards the values 
of x and y as coordinates of a point in a coordinate j«/-plane, 
then to each value of t there will correspond a definite point in 
the plane. And when t varies from 7 \ to Tt , this point will de-

scribe a certain curve. Equations (1) are 
called parametric équations of this curve, 
t is the parameter, and parametric is 
the way the curve is represented b y 
équations (1).

Let us further assume that the fun- 
ction x =  <p(Ohas an inverse, < =  fl)(x). 
Then, obviously, y is a function of x;

ÿ =  [<£(*)] (2)

Thus, équations (1) define y as a fiinc- 
tion of x , and we sa y that the function 
y of x is represented parametrically.

The explicit expression of the dependence of y on x, y = f(x), 
is obtained by eliminating the parameter t from équations (1).

Parametric représentation of curves is widely used in mechanics. 
If in the xy-plane there is a certain material point in motion and 
if we know the laws of motion of the projections of this point on 
the coordinate axes, then

* =  <P(0 \

0 =  ̂ (0  I
(1')

where the parameter t is the time. Then équations (T) are para-
metric équations of the trajectory of the moving point. Elimina-
ting from these équations the parameter t, we get the équation of 
the trajectory in the form y — f(x) or F (x, y) =  0. By way of il-
lustration, let us take the following problem.

Probleni. Détermine the trajectory and point of impact of a load dropped 
from an airplane moving horizontally with a velocity u0 at an altitude y0 (air 
résistance is disregarded).

Solution. Taking a coordinate System as shown in Fig. 75, we assume that 
the airplane drops the load at the instant it cuts the y-axis. It is obvious that 
the horizontal translation of the load will be uniform and with constant velo-
city v0:

x=*vnt
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3.17 The Equations of Some Curves in Parametric Form 99

Vertical displacement of the falling load due to the force of gravity will be 
expressed by the formula

Hence the distance of the load from the ground

St2
y=y  o“ 2"

at any instant will be

The two équations
x =  v0t

y= y  o—
s*
2

are the parametric équations of the trajectory. To eliminate the parameter t 9

we find the value t = — from the first équation and substitute it into the second 
üo

équation. Then we get the équation of the trajectory in the form

y = x2

This is the équation of a parabola with vertex at the point M (0, y 0)> the 
^-axis serving as the axis of symmetry of the parabola.

We détermine the length of OC. Dénoté the abscissa of C by X y and note 
that the ordinate of this point is y =  0. Putting these values into the preceding 
formula, we get

whence

0= y » - f i x t

X =  v0 2JÙL

3.17 THE EQUATIONS OF SOME CURVES IN PARAMETRIC FORM

Circle. Given a circle with centre at the coordinate origin and with radius r 
(Fig. 76).

Dénoté by t the angle formed by the x-axis and the radius to some point 
M (x, y) of the circle. Then the coordinates of any point on the circle will be 
cxpressetî in terms of the parameter t as follows:

x=
y

= rcost, \ 
=  r sin t f I

These are the parametric équations of the circle. 
If we eliminate the parameter t from these équa-
tions, we will hâve an équation of the circle con-
tai ning only x and y. Squaring the parametric 
équations and adding, we get

x2 +  y 2 =  r2 (cos2 t +  sin2 1)

x2-\-y2 =  r2

s
Прямоугольник

s
Прямоугольник



100 Ch. 3. Dérivative and Differential

Ellipse. Given the équation of the ellipse

Set
x — a cos t

( )

(2')

Putting this expression into équation (1) and performing the necessary mani-
pulations, we get

y =  b s in t  (2”)
The équations

*=afccos!’ (2)
y =  b s m t ,  I

are the parametric équations of the ellipse.
Let us find out the geometrical meaning of the parameter t. Draw two 

circles with centres at the coordinate origin and with radii a and b (Fig. 77).
Let the point M (x , y) lie on the ellipse, 
and let B be a point of the large circle with 
the same abscissas as M. Dénoté by t the 
angle formed by the radius OB with the 
x-axis. From the figure it follows directly 
that

x =  OP =  a cos t (2')
CQ =  b sin t

From (2") we conclude that CQ =  y ; in 
other words, the straight line CM is parallel 
to the x-axis.

Consequently, in équations (2) t is an 
angle formed by the radius OB and the axis 
of abscissas. The angle t is sometimes called 
an eccentric angle.

Cycloid. The cycloid is a curve descri- 
bed by a point lying on the circumference 

of a circle if the circle rolls upon a straight line without sliding (Fig. 78). 
Suppose that when motion began the point M of the rolling circle lay at the 
origin. Let us détermine the coordinates of M after the circle has turned through

an angle t . If a is the radius of the rolling circle, it will be seen from Fig. 78 
that

x = O P  =  OB — PB
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3.17 The Equations of Sortie Curves in Parametric Foim 101

but since the circle rolls without sliding, we hâve

OB =  (ÂB =  a t, P B = M K  =  a s ia i

Hence, x — at — a sin t = a  ( / — sia /).
Further,

y =  MP =  KB  =  CB—CK =*a—a cos t =  a (1 — cos t)

The équations
x =  a ( t — sin t) 
y = a (  1 —cos t) }• (3)

are the parametric équations of the cycloid. As t varies between 0  and 2ji, the 
point M will descrihe one arch of the cycloid.

Eliminating the parameter t from the latter équations, w^get x as a function 
of y directly. In the interval the function y =  a (  1— cos t)  has an
Inverse:

, a — y
t — arccos----- -

Substituting the expression for t into the first of équations (3), we get

a — y . f  a — y \
x =  a arccos------ =— a sin arccos -

a [  a J

x — a arccos—— -~ V ^ 2 a y — y 2 when O ^ x ^ n a  
a

Examining the figure we note that when J ta ^ x ^ 2 n a

x =  2jia— arccos ~ ~ ~ ~  Ÿ 2 a y — ÿ2^

It will be noted that the function

x =  a (f — sin t)

has an inverse, but it is not expressible in ternis of elementary functions. And 
so the function y =  f(x) is not expressible in tenus of elementary functions 
either.

Note 1. The cycloid clearly shows that in certain cases it is more convenient 
to use the parametric équations for studying functions and curves than the 
direct relationship of y  and x (y as a function of x or x as a function of y).

Astroid. The astroid is a curve represented by the following parametric 
équations:

x =  acos3 f \ ____ . __
y =  asm *t f ' '

Raising the tenus of both équations to the power 2/3 and adding, we get the 
following relationship between x and y:

_2_ 2_ 2_

x 3 + y 3 = a 3 (cos3 1 -(-sin2 f)
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102 Ch. 3. Dérivative and Differential

Fig. 79

or
_2_ _2_ _2_

* 3 + y 3 =<»3 ®
Later on (Sec. 5.12) it will be shown that this 
curve is of the form shown in Fig. 79. It can 
be obtained as the trajectory of a certain point 
on the circumference of a circle of radius a/4  
rolling (without sliding) upon another circle of 
radius a (the smaller circle always remains in- 
side the larger one, see Fig. 79).

Note 2 . It will be noted that équations 
(4) and équation (5) define more than one fonc-
tion y =  f(x ). They define two continuous func- 
tions on the interval — a < ; * < : +  a. One takes 
on nonnegative values, the other nonpositive 
values.

3.18 THE DERIVATIVE OF A FUNCTION REPRESENTED 
PARAMETRICALLY

Let a function y of x be represented by the parametric équations

* =  <P(0 \

Let us assume that these functions hâve dérivatives and that the 
function * =  <p(0 has an inverse, / =  <D(x), which also has a 
dérivative. Then the function y = f(x) defined by the parametric 
équations may be regarded as a composite function:

y = ♦ ( /) , t*=<b(x)

t being the intermediate argument.
By the rule for differentiating a composite function we get

y'x=y'A=\i>; (/) o; (*) (2)

From the theorem for the différentiation of an inverse function, 
it follows that

<d ; w  =
<P< (0

Putting this expression into (2), we hâve

V‘ = £ H Îy* <p' (o

or

1 6 = 4 -
Xt

(XXI)
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3.18 Dérivative of a Function Représentai Parametrically 103

The derived formula permits finding the dérivative yx of a 
function represented parametrically without having to find y  as 
a function of x.

Example 1. The function y  of * is given by the parametric équations 

jc= a cos  t 1 »  .
y = a s in  t f

Find the dérivative (1) for any value of t\ (2) for / =  -£-.

Solution.

(i) y*=
(a sin t)' _ a c o s t
(a cos t)' — a sin t

(2) (y'x)t=jL= —cot-^ = — i-

=  — cot /;

Example 2. Find the slope of the tangent to the cycloid

x = a  ( /— sin t) 

y = a  ( 1— cos /)

at an arbitrant point (0 ^ / ^ 2jt).
Solution. The slope of the tangent at each point is equal to the value of 

the dérivative yx at that point; i .e . ,  it is

But

Consequently,

u —IL  yx — —r
xt

x't = a  ( 1— cos /), y t —a s in /

0 . t t 
. , 2 sin — cos —asm/ 2

a ( 1 — cos t)
2 sin2

- ^ - = c o t |  =  tan ( y - - )

Hence, the slope of the tangent to a cycloid at every point is equal to tan 

f y — , where / is the value of the parameter corresponding to this point. 

But this means that the angle a  of inclination of the tangent to the x-axis is 

equal to y  —y  (for values of / lying between — ji and ji) *.

* Indeed, the slope is equal to the tangent of the angle of inclination a  

of the tangent to the x-axis. And so tan a== tan ^ y —y  j  and a  =  y —y

jx /
for those values of / for which -----^  lies between 0  and ji.

s
Прямоугольник



104 Ch. 3. Dérivative and Differential

3.19 HYPERBOL1C FUNCTIONS 

In many applications of mathematical analysis we encounter 
combinations of exponential functions of the form y  (ex—e~x) and

+  These combinations are regarded as new functions and 
are designated as follows:

sinhx =  —"2C' 

cosh x — -*~^e j
( )

The first of these functions is called the hyperbolic sine, the 
second, the hyperbolic cosine. These functions may be used to define
two more functions: tanh x =  * and cothx = coshjc-

cosh x sinhx

gX_g—X \
tanh x =  j^ -s ï  . the hyperbolic tangent,

ex -V-e~x
coth x =  gx—g-x • ^  hyperbolic cotangent

The functions sinhx, coshx, tanhx are obviously defined for ail 
values of x. But the function coth* is defined everywhere, except 
at the point x =  0. The graphs of the hyperbolic functions are 
given in Figs. 80, 81, 82.

From the définitions of the functions sinh* and coshx [formu-
las (1)] there follow relationships similar to those between the 
appropriate trigonométrie functions:

cosh2x —sinh2x = l  (2)
cosh (a +  b) =  cosh a cosh b -f sinh a sinh b (3)
sinh (a +  b) =  sinh a cosh b -f- cosh a sinh b (3')

Indeed,

cosh2x — sinh*x=  *)*—

_  e2* + 2 + e - 2*—e*x +  2—e~*x ,
4 ~ 1

cosh (a -(- b) =  -a+t'~y>

Further, noting that
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3.19 Hyperbolic Functions 105

we get

cosh a cosh b +  sinh a sinli b
ea-\-e^aeb + e ~ b , ea—e - aeb—e - b

2 2 1 2 2 
ea + b _*_e- a  + b_^ea-b_^_e-  a-&_|_ga + b__e- a  + b__ea -  6_j_g-a-fc

od+b a -b
■■ cosh (a +  b)

The proof is similar for relation
(3').

The name “hyperbolic functions” 
cornes from the fact that the func-
tions sinh t and cosh / play the 
sanie rôle in the parametric 
représentation of the hyperbola. 

x*—y* = 1

as the trigonométrie functions sin t and cos t do in the parametric 
représentation of the circle

x*+y*=  1

Indeed, eliminating the parameter t from the équations 

x= cos t, y = slnt
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106 Ch. 3. Dérivative and Differential

we get
x3+ y3 = cos3t +  sin81

or
x3 y3 = \  (the équation of the circle)

Similarly, the équations
x = cosh t 
y = sinh/

are the parametric équations o! the hyperbola.
Indeed, squaring these équations termwise and subtracting the 

second from the first, we get

Since, on the basis of formula (2), the expression on the right 
is equal to unity, we hâve

x3—y3= 1

which is the équation of the hyperbola.
Let us consider a circle with the équation x3 +  y3 = 1 (Fig. 83). 

In the équations x =  cos/, y =  sin/, the parameter t is numerically

equal to the central angle i40Af or to the doubled area 5 of the 
sector AOM, since t = 2S.

Let it be noted, without proof, that in the parametric équations 
of the hyperbola,

the parameter t is also numerically equal to twice the area of the 
“hyperbolic sector” AOM (Fig. 84).

x3—y3 =  cosh21—sinh* t

y

Fig. 83 Fig. 84

x =  cosh t 
ÿ =  sinhf
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3.20 The Differential 107

The dérivatives of the hyperbolic functions are defined by the 
formulas

(sinh x)' =  cosh x, 

(cosh x)’ =  sinh x.

<tanh* r = d î ^ .

(coth x)' =  jujgrj
(XXII)

which follow from the very définition of hyperbolic functions; for 
instance, for the function sinhx =  e* ~ e we hâve

(sinh*)' = ( ——2~ )  _ eX+* =  cosh x

3.20 THE DIFFERENTIAL

Let a function y = f(x) be différentiable on an interval [a, fe]. 
The dérivative of this function at some point x of [a, b\ is detér- 
mined by the équation

lim
Ajt -̂ 0

^  = f'(x)
Sx

As Ax —*-0, the ratio —  approaches a definite number /'(x) and, 
consequently, differs from the dérivative / ' (x) by an infinitésimal:

Aÿ
A* =  /'(* ) +  «

where a —►O as A*—>-0.
Multiplying ail terms by Ax, we get

Ay = f'(x )A x+ a A x  (1)

Since in the. general case / ' (x) ^  0, for a constant x  and a variable 
Ax—*-0, the product f' (x) Ax is an infinitésimal of the first order 
relative to Ax. But the product aAx is always an infinitésimal of 
higher order than Ax because

lim —  ̂=  lim a  =  0
A*->-0 a x  A x  -*■ 0

Thus, the incrément A y of the function consists of two terms, of 
which the first is [when /'(jc)^=0] the so-called principal part of 
the incrément, and is linear in Ax. The product f  (x) Ax is called 
the differential of the function and is denoted by dy or df (x).

And so if a function y = f(x) has a dérivative / '  (x) at the point x, 
the product of the dérivative f'(x) by the incrément Ax in the 
argument is called the differential of the function and is denoted 
by the symbol dy:

dy = f  (x) A* (2)
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108 Ch. 3. Derivatioe and Differential

Find the differential of the function y — x\ here,

*' =  (* ) '= !
and, consequently, dy = dx = Ax or dx — Ax. Thus, the differential 
d x  of the independent variable x  coïncides with its incrément Ax.
The équation dx = Ax might be regarded likewise as a définition 
of the differential of the independent variable, and then the fore- 
going example would indicate that this does not contradict the 
définition of the differential of the function. In any case, we can 
write formula (2) as

dy =  f ’ (x) dx 

But from this relationship it follows that

r w - î

Hence, the dérivative / '  (x) may be regarded as the ratio of the 
differential of the function to the differential of the independent 
variable.

Let us retum to expression (1), which, taking (2) into account, 
may be rewritten thus:

Ay = dy + aAx (3)

Thus, the incrément of a function differs from the differential of 
a function by an infinitésimal of higher order than Ax. If / ' (x )# 0 , 
then aAx is an infinitésimal of higher order than dy and

lim
A*-+0

lim
ùix 0

«Ax 
/' (x) A*

=  1+  lim — = 1
A*->0 / W

For this reason, in approximate calculations one sometimes uses 
the approximate équation

A y »  dy (4 )

or, in expanded form,
f  (x +  Ax) — f  (x) «  P (x) Ax (5)

thus reducing the amount of computation.
Example 1. Find the differential dy and the incrément of the function 

y=x2:
(1) for arbitrary values of x and Ax,
(2 ) for x = 2 0 , A x = 0 . 1.
Solution. (1) Ay =  (x+A x)a—xa =  2xA*+A*2,

dy — (x2)' Ax =  2xAx.

(2) If x =  20, A x = 0 .1, then &y =  2-20*0.1 + (0 .1 )a =  4.01,

dy =  2-20-0.1 = 4 .00 .
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3.20 The Differential 109

Replacing &y by dy yields an error of 0 .0 1 . In many cases, it may bç con- 
nldered small compared with Ay =  4.0l and therefore disregarded.

Fig. 85 gives a clear picture of the above problem.

In approximate calculations, one also makes use of the following

(6)

équation, which is obtained from (5) 

f(x  + Ax) « / ( * )  +  / ' (x) Ax

Example 2. Let /(jc) =  sin;c, then f'(x) =  cos j c . 

In this case the approximate équation (6 ) takes 
the form

sin ( jc  +  Ax) a  sin jc +  c o s  x A jc (7)

Let us calculate the approximate value of

71 A y~  i ° 31
T '  *x- { TSÔ 1« i n  4 6 * .  Put x  =  45* =  ' Ç - , à x —  1 °  =  t jc  +  A jc  =

Substitutinë into (7) we get Fig. 85

or
sin 46* :

sin 46° = s in  ( ^ + ^ )  «  sin -  +  cos

y^2 , y~2 n
2  180 =0.7071 +0.7071 -0.0175 =  0.7191

Example 3. If in (7) we put x =  0, A x = a ,  we get the following approximate
équation:

s i n  a  a  a

Example 4. If f(x) =  tan*, then by (6 ) we get the following approximate 
équation:

tan(jc +  A j c )  a  tan xA------^— A j c1 cos2 JC
for x-=0, Ajc =  a , we get

tan a «  a

Example 5. If f ( x ) =  V~x* then (6 ) yields

V'x+'àx  a  y~x  H -------------!—  A j c

2  V j c

Putting j c  =  1, Ajc =  a, we get the approximate équation

V 1 +  <* « 1 + Y a

The problem of finding the differential of a function is équiva-
lent to that of finding the dérivative, since, by multiplying the 
latter into the differential of the argument we get the differential 
of the function. Consequently, most theorems and formulas per- 
taining to dérivatives are also valid for differentials. Let us illust- 
rate this.

The differential of the sum of two différentiable functions u and 
v is equal to the sum of the different ials of these functions

d(u + v) ~du  + dv
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110 Ch. 3. Dérivative and Differential

The differential of the product of two différentiable functions u 
and v is determined by the formula

d (uv) = udv +  vdu

By way of illustration, let us prove the latter formula. If 
y = uv, then

dy = y' dx = (uv' +  vu') dx =  uv' dx +  vu’ dx
but

v' dx =  dv, u' dx =  du
therefore

dy = udo-\-vdu

Other formulas (for instance, the formula defining the differen- 
tial of a quotient) are proved in similar fashion:

if u
V ’

then dy
V du  —  u dv

S5

Let us solve some examples in calculating the differential of a 
function.

Example 6 . y  =  tan8*, dy =  2 ta n * — dx.
r  9  ”  COS2 X

Example 7. y — Y  1 +  lnx, dy =  —  j- * • — dx.
2 \  1 +  In je *

We find the expression for the differential of a composite func-
tion. Let

y = f(u), u = q>(x), or </ =  /[<p(*)]

Then by the rule for differentiating a composite function,

ÿx = f ’u (u) Y  {x)

Hence,
dy = f ’u(u)(?'(x)dx

but <p'(x)dx =  d«, therefore
dy =  / ' (u) du

Thus, the differential of a composite function has the sanie form 
as it would hâve if the intermediate argument were the independent 
variable. In other words, the form of the differential does not dé-
pend on whether the argument of the function is an independent 
variable or the function of another argument. This important pro- 
perty of a differential, called the préservation of the form of the 
differential, will be widely used later on.
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3.21 The Géométrie Meaning of the Differential 111

Example 8 . Given a function y =  sin>^"jc. Find dy.
Solution. Representing the given function as a composite one:

(/ =  sin ut u =  Y * * 
we find #

dy =  cos u — -pr= dx 
2 Ÿ  x

but — =  d x = d u , so we can Write
2 \f *

dy =  cos u du 
°r _  _

dy =  cos ( V x  ) d ( Y  x ).

3.21 THE GEOMETRIC MEANING OF THE DIFFERENTIAL

Let us consider the function

y =f ( x )

and the curve it represents (Fig. 86).
On the curve y = f(x), take an arbitrary point M(x, y), draw a 

line tangent to the curve at this point and dénoté by a the 
angle* which the tangent line forms with the positive x-axis. 
Increase the independent variable by Ax; then the function will 
change by Ay = NM t. To the values x +  Ax, y +  Ay on the curve 
y = / (x) there will correspond the point Af, (x +  Ax, y + Ay).

From the triangle MNT we find

Since 

we get

NT =  MN tan a  

tan a =  f  (x), MN =  Ax 

NT = f' (x) Ax

But by the définition of a differential f' (x) Ax = dy. Thus,

NT = dy

The équation signifies that the differential of a function /(x), which 
corresponds to the given values x and Ax, is equal to the incrément 
in the ordinate of the line tangent to the curve y = f(x) at the 
given point x.

* Assuming that the function f(x) has a finite dérivative at the point x,
* n we get o  .
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112 Ch. 3. Dérivative and Differentiat

From Fig. 86 it follows directly that

MtT = Ay— dy

By what has already been proved, —>-0 as A x—>-0.

One should not think that the incrément A y is always gréa ter 
than dy. For instance, in Fig. 87,

Ay — M^N, dy — NT, and A y < d y

3.22 DERIVATIVES OF DIFFERENT ORDERS

Let a function y = f(x) be différentiable on some interval [a, b]. 
Generally speaking, the values of the dérivative / ' (x) dépend on x, 
which is to say that the dérivative / '  (x) is also a function of x .  
Differentiating this function, we obtain the so-called second déri-
vative of the function /(x).

The dérivative of a first dérivative is called a dérivative of the 
second order or the second dérivative of the original function and 
is denoted by the symbol y" or /"(x):

y"=(y ')' =  /"(x)

For example, if t/ =  x5, then

y '^bx* , y” =  (5x4)' =  20x3

The dérivative of the second dérivative is called a dérivative 
of the third order or the third dérivative and is denoted by y'" or
r ( x ) .

Generally, a dérivative of the nth order of a function /(x) is 
called the dérivative (first-order) of the dérivative of the (n— l)th 
order and is denoted by the symbol yin) or /<n)(x):

ÿW> =  (j« - 7  =  /W (x)
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