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3.11 AN IMPLICIT FUNCTION AND ITS DIFFERENTIATION

Let the values of two variables jc.and y be related by some 
équation, which we can symbolize as follows:

F(x, y) = 0 (1)

If the function y = f{x), defined on some interval (a, b), is 
such that équation (1) becomes an identity in x when the expres-
sion f(x) is substituted into it in place of y, the function y = f(x) 
is an implicit function defined by équation (1).

For example, the équation

x2 +  y*— a* =  0 (2)

defines implicitly the following elementary functions (Figs. 64
and 65): _____

y = V" a2—x2 (3)
y = — V a 2—x2 (4)

Indeed, substitution into équation (2) yields the identity

x2 +  (a?—xa)—a2 =  0

Expressions (3) and (4) were obtained by solving équation (2) 
for y. But not every implicitly defined function may be represented 
explicitly, that is, in the form y = f(x),* where f(x) is an ele-
mentary function.

For instance, functions defined by the équations

y®—y —x2 = 0
or

y —x — sin {/ =  0

are not expressible in terms of elementary functions; that is, these 
équations cannot be solved for y.

* If a function is defined by an équation of the form y =  f(x ), one says 
that the function is defined explicitly or is explicit.
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86 Ch. 3. Dérivative and Differeritial

Note 1. Observe that the ternis “explicit function” and “implicit 
function” do not characterize the nature of the function but merely 
the way it is defined. Every explicit function y = f(x) may also 
be represented as an implicit function y —f(x) = 0 .

We shall now give the rule for finding the dérivative of an 
implicit function without transforming it into an explicit one, 
that is, without representing it in the form y = f(x).

Assume the function is defined by the équation

x2 + y*— a* = 0

Here, if y is a function of x defined by this équation, then the 
équation is an identity.

Differentiating both sides of this identity with respect to x, and 
regarding y as a function of x, we get (via the rule for differen-
tiating a composite function)

2x -f- 2yy’ — 0
whence

Observe that if we were to differentiate the corresponding exp-
licit function

y — Y  a?—x2

we would obtain

which is the same resuit.
Let us consider another case of an implicit function y of x:

y*—y —xt = 0

Differentiate with respect to x:

6yhy '—y' — 2x = 0
whence

Note 2 . From the foregoing examples it follows that to find the 
value of the dérivative of an implicit function for a given value 
of the argument x, one also has to know the value of the func-
tion y for the given value of x.
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3.12 Dérivatives of Power and Exponential Functions 87

3.12 DERIVATIVES OF A POWER FUNCTION FOR AN ARBITRARY 
REAL EXPONENT, OF A GENERAL EXPONENTIAL FUNCTION,

AND OF A COMPOSITE EXPONENflAL FUNCTION

Theorem 1. The dérivative of the function xn, where n is any 
real number, is equal to nxn~x; that is,

if y = xn, then y' = nxn~1. (I')

Proof. Let x > 0 .  Taking logarithms of this function, we get
lny = n ln*

Differentiate, with respect to*, bothsidesof the équation obtained, 
taking y to be a function of *:

y ’ 1 , 1  — = n —, y =yn — 
y x ’ v  v x

Substituting into this équation the value y — xf, we finally get
y’ =  nxn~l

It is easy to show that this formula holds true also for * <  0 
provided x" is meaningful. *

Theorem 2. The dérivative of the function ax, where a >  0, is 
a“ ln a; that is,

if y = ax, then y ' = a x \na. (XIV)

Proof. Taking logarithms of the équation y = ax, we get
ln y — x lna

Differentiate the équation obtained regarding y as a function of x:

or

— y' = lna, y ’ ^ y ln a
y

y' =ax \na

If the base is a = ey then lne =  1 and we hâve the formula
y = ex, y —ex (XIV')

Example I. Given the function

y =  ex*

Rcprcsent it as a composite function by introducing the intermediate argu-
ment u:

y =  eu, u =  x2

lhen
yu = eu, ux =  2x

* This formula was prcved in Sec. 3.5, for the case when n is a positive 
integer. Formula (1) has now been proved for the general case (for any constant 
number n).
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88 Ch. 3. Derivaiive and Differential

and, therefore,
y'x =  eu-2x =  e*l -2x

A composite exponential function is a function in which both 
the base and the exponent are functions of x, for instance, (sinx)*2, 
xUnJ<, x*, (lnx)*; generally, any function of the form

ÿ =  [u (x)]v{x) =  uv

is a composite exponential function.*
Theorem 3.

If  y — uv, then y' — vuv~l u'-\-uvv' \nu. (XV)

Proof. Taking logarithms of the function y , we hâve
\ny = v\nu

Differentiating the résultant équation with respect to x, we get
l , 1 , , , -—y = v — u -f u ln u y v u '

whence

a ( wT T v ,n u )

Substituting into this équation the expression y = uv, we obtain 
y' =  u«®-1 u' +  uvv' ln u

Thus, the dérivative of a composite exponential function consists 
of two terms: the first term is obtained by assuming, when diffe-
rentiating, that u is a function of x and u is a constant (that is 
to say, if we regard uv as a power function); the second term is 
obtained on the assumption that u is a function of x, and u =  const 
(i. e., if we regard uv as an exponential function).

Exantple 2. If y =  xx, then y' =  xxx ~l (x') +  x* (x') ln x or 

y' =  xx +  xx ln x =  xx (1 +  ln x)

Example 3. If y =  (sinx)**, then

y' =  (sin je)*2- 1 (sin *)' +  (sin x)** (x2)' In sin x 

=  x2 (sin x )*2 - 1  cos x +  (sin x)'*2 2x In sin x

The procedure applied in this section for finding dérivatives 
(first finding the dérivative of the logarithm of the given function) 
is widely used in differentiating functions. Very often the use of 
this method greatly simplifies calculations.

* ln the Soviet mathematical literature this function is also called an expo-
nential-power function or a power-exponential function.
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3.13 An Inverse Function and Its Différentiation 89

Example 4. Find the dérivative of the function

(*+ i)2 
y  (* +  4 f e *

Solution. Taking logarithms we get

1ln i/ = 2 ln ( j t + l ) - f - y  ln (*— H — 3 ln (x+4) — x

Differentiate both sides of this équation:

y'  2 . 1
x -\-1 1 2 (x— 1) x +  4

-1

Multiplying by y and substituting, in place of y, the expression

/7 = T.. WCget
(x +  4)3 ex

y  =
( * + l )2 V T - T

(jc H- 4)3 e*

1
[jc+ 1  1 2 (jc— 1) x + 4

-1

Note. The expression y  =  (Int/)', which is the dérivative, with
respect to x, oî the natural logarithm of the given function y = y{x), 
is called the logarithmic dérivative.

3.13 AN INVERSE FUNCTION AND ITS DIFFERENTIATION

Take an increasing or decreasing function (Fig. 6 6)
y = f(x) (1)

defined in some interval (a, b) (a < b ) (see Sec. 1.6). Let f(a) = c, 
f(b) = d. For definiteness we shall henceforward consider an 
increasing function.

Let us consider two different values x1 and xt in the interval 
(a, b). From the définition of an increasing function it follows that 
if xt <  x2 and y1 =  /  (jcx), & =  f  (*„), 
then y ^ < y %. Hence, to two diffe-
rent values xx and x2 there corre-
spond two different values of the 
function, yt and y2. The converse 
is also true: if t/, <  t/2, t/, =  / (xx), 
and y2 = f (xt), then from the défi-
nition of an increasing function it 
follows that xx <  x2. Thus, a one- 
to-one correspondence is establish- 
ed between the values of x and 
the corresponding values of y.

Regarding these values of y as values of the argument and the 
values of x as values of the function, we get x as a function of y:

* =  <P {y) (2)
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90 Ch. 3. Dérivative and Differential

This îunction is called the inverse function of y = f(x). It is obvi- 
ous too that the function y = f{x) is the inverse of x =  <p (y). With 
similar reasoning it is possible to prove that a decreasing function 
also has an inverse.

Note 1. We state, without proof, that if an increasing (or de-
creasing) function y = f(x) is continuous on an interval [a, b], where 
f  (a) = c, f  (b) =  d, then the inverse function is defined and is con-
tinuous on the interval [c, d].

Example 1. Given the function y = x 3. This function is increasing on the 
infinité interval — ao < x <  +  oo; it has an inverse function x = p ' ry  (Fig. 67).

It will be noted that the inverse function x = y(y)  is found by 
solving the équation y = f(x) for x.

Example 2 . Given the function y =  ex . This function is increasing on the 
infinité interval — oo < x < - \ - o o .  It has an inverse x =  ln y. The domain of 
définition of the inverse function is 0 < y < + oo  (Fig. 6 8 ).

Note 2 . If the function y = f(x) is neither increasing nor decreas-
ing on a certain interval, it can hâve several inverse functions. *

Example 3. The function y =  x2 is defined on an infinité interval
—  o o < x < + o o .  It is neither increasing nor decreasing and does not hâve
an inverse function. If we consider the interval < + o o ,  then the function
here is increasing and x =  ÿ~y is its inverse. But in the interval — oo < x < 0 
the function is decreasing and its inverse is x =  — V y  (Fig. 69).

Note 3. If the functions y = f(x) and x = <p(y) are inverses of
each other, their graphs are represented by a single curve. But if

* Let it be noted once again that when speaking of y  as a function of x we 
hâve in mind that y  is a single-valued function of x.
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3.13 An Inverse Function and lis  Différentiation 91

we again dénoté the argument of the inverse function by x, and 
the function by y, and then construct them in a single coordinate 
System, we will get two different graphs.

It will readily be seen that the graphs will 
be symmetric about the bisector of the first 
quadrantal angle.

Example 4. Fig. 68  gives the graphs of the function 
y -  ex (or x = \n y )  and its inverse y =  Inx, which 
are considered in Example 2.

Let us now prove a theorem that permits 
finding the dérivative of a function y = f(x) 
if we know the dérivative of the inverse 
function.

Theorem. I f for the function

y =f ( x ) ( i )

there exists an inverse function

*=<p (y) (2)

which at the point under considération y has a nonzero dérivative 
«p' (y), then at the corresponding point x the function y = f(x) has
a dérivative f  (x) equal to — ; that is, the following formula
is true:

(*v i)

Thus, the dérivative of one of two inverse functions is equal to 
unity divided by the dérivative of the second function for corre-
sponding values of x and y. *

Proof. Take the incrément A y. Then, by (2), we hâve

Ax = y (y + A y )— (?(y)

Since <p (y) is a monotonie function, it follows that A x ^O . We 
write the identity

Ay _  J _  
A* Ax (3)

A y

* When we write f' (x) or yx we regard x as the independent variable when 
rvaluating the dérivative; but when we write q/ (y) or Xu we assume that y is 
ihe independent variabie when evaluating the dérivative, it should be noted that 
•fter differentiating with respect to y ,  as indicated on the right side of formula 
( X V I ) ,  / ( jc) must be substituted for y.
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92 Ch. 3. Dérivative and Differential

Since the function q>(y) is continuous, then Ax —>-0 as A y —*-0. 
Passing to the limit as A y—*-0 in both members of (3), we get

y ’x = —T- or f' (x) =  —7-r\
X y 1 '  9 (y)

In other words, we obtain formula XVI.
Note. If one takes advantage of the theorem on differentiating 

a composite function, then formula XVI may be obtained in the
following manner.

Differentiate both members of (2) with 
respect to x, taking y to be a function 
of x. This yields 1 =  <p' (y) y ’x, whence

yx-
9 ' (y)

The resuit obtained is clearly illustrated 
geometrically. Consider the graph of the 
function </ =  /(*) (Fig. 70). This curve 
will also be the graph of the function 
x = y (y), where x is now regarded as the 
function and y as the independent variab-
le. Take some point Af (x, y) on this curve. 

Draw a tangent to the curve at this point. Dénoté by a and p the 
angles formed by the given tangent and the positive x- and ^-axes. 
On the basis of the results of Sec. 3.3 concerning the geometrical 
meaning of a dérivative we hâve

/ ' (x) =  tan a   ̂
q>' (y) =  tan p j

( 4 )

From Fig. 70 it follows directly that if a < - y ,  then P =  y —a .

But if a > - ^ - ,  then, as is readily seen, P =  4p—ex. Hence, in 
any case tan P =  cota, whence ta n a ta n p  =  ta n a c o ta =  1, or 
tana  =  ^ - j j .  Substituting the expressions for tan a  and tanp from 
formula (4), we get

i
<p' (y)

3.14 INVERSE TRIGONOMETRIC FUNCTIONS 
AND THEIR DIFFERENTIATION

(1) The function ÿ =arcsin x;.
Let us consider the function

x: =  sin^ ( )
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3.14 Inverse Trigonométrie Functions 93

and construct its graph by directing the ÿ-axis vertically upwards 
(Fig. 71). This function is defined in the infinité interval —oo<

+  Over the interval—4y ^  ^ If ’ the function x: =  sin«/
is increasing and its values fill the in-
terval — I ^ j c ^ I .  For this reason, the 
function x — sm y  has an inverse which 
is denoted by

y =  arcsin x *

This function is defined on the interval 
— 1 1, and its values fill the in-

tcrval— ^ig.
graph of y = arcsin x is shown by the 
heavy line.

Theorem 1. The dérivative of the fun-
ction arcsin x: is equal to 1 i. e.,

if y = arcsin x, then y' =  —--
y i—x*

(XVII)

Proof. On the basis of (1) \ve hâve
x’y =  cos y

By the rule for differentiating an inverse function,

but

therefore,

, _  I 1
yx ~  Xy ~  cos y

cos y =  V 1 — sin2 y =  V 1 — x2 

l
yx-

V  i —*2

The sign in front of the radical is plus because the function 
y ^arcsinx: takes on values in the interval — and,  
consequently, co sy^O .

Example 1. y — arcsin ex,

1 P *
y' = ->■■■■■?■■■■■■■■ (e*y=  _f__zrr 

V  l - ( e *)2 j A - e 2*

* 11 may be noted that the familiar équation y== Arcsin x o i trigonometry is 
jinother way of writing (1). Here (for a given x) y dénotés the set of values of 
angles whose sine is equal to x.
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94 Ch. 3. Dérivative and Differential

Example 2. y = ^ a r c s in —  ̂ .

y' =  2  arcsin
1

V - i
(t )’- O • 1 1— 2  arcsin-------- — ..

X X  Y  X* —  1

function t/ =  arccos* is

(2) The function # =  arccos*.
As before, we consider the function

x =  cos ÿ (2)

and construct its graph with the «/-axis ex- 
tending upwards (Fig. 72). This function is 
defined on the infinité interval — oo <  
i / < + o o .  On the interval O ^ y ^ n ,  the 
function x =  cos y is decreasing and has an 
inverse that we dénoté

y = arccos x

This function is defined on the interval 
— 1 < * < 1 .  The values of the function 
fill the interval n ^ y ^ s O .  In Fig. 72, the 
depicted by the heavy line.

Theorem 2 . The dérivative of the function arccos x i s ------ ■
1 1 V l—x*’

i. e.,

if y  =  arccos x, theny' =  — y  ^ a . (XVIII)

Proof. From (2) we hâve
x'y = — sin y

Hence

yx= - = - sin y
1

]T 1 — cos* y

But cos j/ =  x , and so
, i

y*~ y  i — x*

In sint/ =  ] / l —cos*ÿ the radical is taken with the plus sign, 
since the function «/ =  arccos x is defined on the interval 0^.y^.n  
and, consequently, sin 0 ^ 0 .

Example 3. rccos (tan*),

, 1 w 1 1y —----------- -- (tan x)    - — 5—
V \ — tan2* Y  I— tan*xc°s*x
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3.14  Inverse T rigonom étrie Functions 95

(3) The function ÿ  =  arctan j c . 

We consider the function
jc =  tan y (3)

and construct its graph (Fig. 73). 
This function is defined for ail values
of y except j/ =  (2 /s+ l)y  (k =  0,
±1 , ±2 , . . . ) .  On the interval

—Y  <  y < y  the function x=  tant/
is increasing and has an inverse:

y = arctan*
Th is function is defined on the 
interval — oo <  x < -f- oo. The va-
lues of the function fill the inter-

val— Y < y < Y -  In Fig' 73> the Flg' 73
graph of the function i/ =  arctan x is shown as a heavy line. 

Theorem 3. The dérivative of the function arctan x is 1 2 ; i. e.,
1 “j~ X

i fy  = arctan x, theny' = f q —z. (XIX)

Proof. From (3) we hâve
l

y  en»;2cos £y

Hence

but

âk =  -V =  COS2 y 
Xu

COS2 y =  5— =  t t ; — s—
a  sec2 y  1 +  tan2 y

since tan y — x, we get, finally,

l
^ “  1 +  X*

Example 4. y  =  (arctan x)4,

y' =  4 (arctan x)3 (arctan x)f =  4 (arctan x)3 ~
1 -\-x

(4) The function */ =  arccotjt.
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96 Ch. 3. Dérivative and Differential

Consider the function
x =  cot y (4)

This function is defined for ail values of y except y = kn(k = 0, 
± 1 , ± 2 , . . . ) .  The graph of this function is shown in Fig. 74.

On the interval 0 <  y <  n, the fun-
ction * =  cot y is decreasing and has 
an inverse:

y =  arccot y

Consequently, this function is defi-
ned on the infinité interval — oo <  
<  x <  +  oo, and its values fill the in-
terval n >  y >  0.

Theorem 4. The dérivative of the
function arccot x i s — ; i.e ..

if y =  arccot x, then y' =

Proof. From (4) we hâve
(XX)

Hence

But

Therefore

yx =  sin2 y =

sin*y

1

cot y =  x

yx l+x*

I
1 -f- cot2 y

3.15 BASIC DIFFERENTIATION FORMULAS

Let us now bring together into a single table ail the basic for-
mulas and rules of différentiation derived in the preceding sections.

y =  const, y ' = 0
Power function:

y = x*, y '= ax*-1
particular instances:

y = V  x, y’
1

f/ =  T ,

2  V  x 
1

y = — ■=f
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3.15 Basic Différentiation Formulas 97

Trigonométrie functions:
ÿ =  sin;t, y = cosx 
y — cos*, yr —— sinx

y = tanx, y' 1

y =  cot x, y' -.

Inverse trigonométrie functions:

y — arcsinx, y'

y =  arccos x, y'

COS2 X 

1
sina x

1
K l—*2

1

y =  arctan x% y' =

y  i—x*
i

1 +  *a

y =  arccot x, */' =  —

Exponential function:

in particular,

y = ax, y' — ax lna 

ÿ =  «/'=«*
Logarithmic function:

l/ =  logflx,

in particular,

ÿ =  lnx, y' = y

General rules for différentiation:
y = Cu (je), y ’ =  Cu' (x) (C =  const)
y = u-f-o—w, y' = u '+ v '—w’ 
y = uv, y' — u'v+ uv'

U ,  u'v — uv‘
y= T >  y = - i r -

y = f w ,  \, . , M, I ».-/.<«>*.<*>
y — uv, y '=  vuv~1u '+  uvu '\nu

If y = f(x), je =  <p (y), where / and <p are inverse functions, then

f 'M  = V î i ï '  where 0 =  /(*)
7 2081
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