
C H A P T E R  3

DERIVATIVE AND DIFFERENTIAL

3.1 VELOCITY OF MOTION

Let us consider the rectilinear motion of some solid, say a stone, 
thrown vertically upwards, or the motion of a piston in the cylin- 
der of an engine, etc. Idealizing the situation and disregarding 
dimensions and shapes, we shall always represent such a body in 
the form of a moving point Af. The distance s of 
the moving point reckoned from some initial position 
Af0 will dépend on the time t\ in other words, s will

At some instant of tim e”1 t, let the moving point f)
Af be at a distance s from the initial position Af0, V M
and at some later instant / +  A/ let the point be at ° 
Af1( a distance s +  As from the initial position (Fig. 57).
Thus, during the interval of time At the distance s Fi§- 57
changed by the quantity As. In such cases, one says
that during the time At the quantity s received an incrément As.

AsLet us consider the ratio ; it gives us the average velocity 
of motion of the point during the time At:

The average velocity cannot in ail cases give an exact picture 
of the rate of translation of the point Af at time t. If, for example, 
the body moved very fast at the beginning of the interval At and 
very slow at the end, the average velocity obviously cannot reflect 
these peculiarities in the motion of the point and give us à correct 
idea of the true velocity of motion at time t. In order to express 
more precisely this true velocity in terms of the average velocity, 
one has to take a smaller interval of time At. The most complété 
description of the rate of motion of the point at time t is given

* Here and henceforward we shall dénoté the spécifie value of a variable 
and the variable itself by the same letter.

be a function of time t:

(2)
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66 Ch. 3. Dérivative and Difjerential

by the limit which the average velocity approaches as At —►O. 
This limit is called the rate of motion at a given instant:

Thus, the rate (velocity) of motion at a given instant is the 
limit of the ratio of incrément in path As to incrément in time 
A/, as the time incrément approaches zéro.

Let us write équation (3) in full. Since

This is the velocity of nonuniform motion. It is thus obvious 
that the notion of velocity of nonuniform motion is intimately 
related to the concept of a limit. It is only with the aid of the 
limit concept that we can détermine the velocity of nonuniform 
motion.

From formula (3') it follows that v is independent of the incré-
ment in time A/, but dépends on the value of t and the type of 
function /(/).

Example. Find the velocity of uniformly accelerated motion at an arbitrary 
time t and at t — 2 sec if the relation of the path traversed to the time is 
expressed by the formula

As = f( t  + A t ) - f ( t ) ,
it follows that

(3')

s= T §t*

Solution. At time t we hâve s =  -^-g/2; at time / +  A/ we get

S+AS = i - fir(/+A0 2 = ÿ^(<1! + 2/ A/+A/*)

We find As:

As
gt M  +  — « A/2

By définition we hav.

Thus, the velocity at an arbitrary time t is v =  g t. 
At t =  2 we hâve (v)t=i =  g-2  =  9 .8 -2 =  19.6 m/sec.

s
Прямоугольник



3.2 The Définition of a Dérivative 67

3.2 THE DEFINITION OF A DERIVATIVE

Let there be a function

9 = f(x) (1)

defined in a certain interval. The function y = f(x) has a definite 
value for each value of the argument x in this interval.

Let the argument x receive a certain incrément Ax (it is imma- 
terial whether it is positive or négative). Then the function y will 
receive a certain incrément A y. Thus, for the value of the argu-
ment x we will hâve y — f(x), for the value of the argument 
jr+A xw e will hâve y-\-Ay=  f(x  +  Ax).

Let us find the incrément of the function A y:
Ay = f(x  +  Ax)— f(x) (2)

Forming the ratio of the incrément of the function to the incré-
ment of the argument, we get

Ay_/(x+A*)—f(x) /q\

We then find the limit of this ratio as Ax—►O. If this limit 
exists, it is called the dérivative of the given function /(x) and is 
denoted f'(x). Thus, by définition,

or

f  (x) =  lim ^
A x - * 0

/'(x) =  lim
A x-* 0

/(x+A x)-f(x) 
Ax (4)

Consequently, the dérivative of a given function y = f(x) with 
respect to the argument x is the limit of the ratio of the incré-
ment in the function Ay to the incrément in the argument Ax, 
when the latter approaches zéro in arbitrary fashion.

It will be noted that in the general case, the dérivative f '  (x) 
has a definite value for each value of x, which means that the 
dérivative is also a function of x.

The désignation / ' (x) is not the only one used for a dérivative. 
Alternative symbols are

«' u" & y * yxf fa

The spécifie value of the dérivative for x = a is denoted f'(a) or
y '  \ x - a ’

The operation of finding the dérivative of a function f(x) is 
called différentiation of the function.
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68 Ch. 3. Derivaiive and Differcntial

Example 1. Given the function y =  x2, find its derivative y f:
(1) at an arbitrary point x,
(2) at x =  3.
Solution. (1) For the value of the argument x , we hâve y =  x2. When the 

value of the argument is x +  Ax, we hâve y -f  Ay =  (x +  Ax)2.
Find the incrément of the function:

Ay =  (x +  Ax)2—x2 =  2xAx+ (Ax)2

Forming the ratio Ay
Ax

, we hâve

Ay
Ax

2xAx+(Ax)2

Âx
— 2x + A x

Passing to the limit, we get the derivative of the given function: 

y' =  lim ^r~=  lim (2x +  Ax) =  2x
A* -► o Ax a * -► o

Hence, the derivative of the function y =  x2 at an arbitrary point is y ' — 2x. 
(2) When x =  3 we hâve

y ' U=3  =  2-3 =  6

Example 2. «/ =  — ; find y .

Solution. Reasoning as before, we get

y x y + & y =
1

x + Ax*

A__  1 1 x —x — Ax_ Ax
x +  Ax x x.(x +  Ax) ~~~ ~""x(x+Ax) ’

A y  ̂  1
Ax x (x + A x ) ’

y ’ =  lim lim \ -----   \ ■ 1 =  — \
a x - j-o  Ax A* _ * 0 L *(*+A x)J x2

Note. In the preceding section it was established that if the 
dependence upon time t of the distance s of a moving point is 
expressed by the formula

s =  / ( 0

the velocity v at time t is expressed by the formula

Hence

v — lim 4 t  =  lim
A l At

a i  ■

f ( t  +  A t ) - f ( t )  
At

o =  s ; = r  ( 0

or, the velocity is equal to the derivative f of the distance with 
respect to the time.

* When we say “the derivative with respect to x” or “the derivative with 
respect to / ” we mean that in computing the derivative we consider the va-
riable x (or the time t , etc.) the argument (independent variable).
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3.3 Géométrie Meaning of the Dérivative 69

3.3 GEOMETRIC MEANING OF THE DERIVATIVE

We approached the notion of a dérivative by regarding the 
velocity of a moving body (point), that* is to say, by proceeding 
from mechanical concepts. We shall now give a no less important 
géométrie interprétation of the dérivative. To do this we must 
first define a tangent line to a curve at a given point.

We take a curve with a fixed point Af0 on it. Taking a point 
M, on the curve we draw the sécant M0M, (Fig. 58). If the point 
Al, approaches the point Af0 without limit, the sécant M0Ml will 
occupy various positions M0M[, M0A^, and so on.

If, in the unbounded approach of the point Aft (along the curve) 
to the point Mu from either si de, the sécant tends to occupy the 
position of a definite straight line M0T, this line is called the 
tangent to the curve at the point Af„ (the concept “tends to 
occupy” will be explained later on).

Let us consider the function f (x) and the correspondis curve

in a rectangular coordinate System (Fig. 59). At a certain value 
of x the function has the value y =  f (x). Corresponding to these values 
of x and y on the curve we hâve the point M0(x, y). Let us increase 
the argument x by Ax. Corresponding to the new value of the 
argument, x +  Ax, we hâve an increased value of the function, 
y + Ay = f(x +  Ax). The corresponding point on the curve will be 
Af,(x +  Ax, y+Ay).  Draw the sécant Àf()Af, and dénoté by <p the 
angle formed by the sécant and the positive x-axis. Form the
ratio From Fig. 59 it follows immediately that

Fig. 58 Fig. 59

» = f(x)

( )
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70 Ch. 3. Dérivative and Differential

Now if Ax approaches zéro, the point M, will move along the 
curve always approaching Af„. The sécant will turn about
M0 and the angle cp will change with Ax. If as Ax—>-0 the angle <p

approaches a certain limit a, the straight 
line passing through M„ and forming an 
angle a with the positive x-axis will be 
the sought-for tangent line. It is easy to 
find its slope:

tana =  lim tan cp =  lim t  ̂=  / ' ( x)
S x - + 0  S x  -* 0 a x

Hence,
/ ' (x) =  tan a (2)

which means that the value of the déri-
vative f' (x), for a giveti value of the ar- 
the tangent of the angle formed with the 
line tangent to the graph of the function 

f(x) at the correspotiding point M0(x,y).

Example. Find the tangents of the angles of inclination of the tangent line 

to the curve y — x2 at the points Af, (—1, 1) (Fig. 60).

Solution. On the basis of Example 1, Sec. 3.2, we hâve y ’=  2x; hence,

tana , = y ' \  i = 1, tan a 2 =  i/'

r ~

3.4 DIFFERENTIABILITY OF FUNCTIONS 

Définition. If the function

gument x, is equal to 
positive x-axis by the

y =  f(x)

has a dérivative at the point x =  x0, that is, if there exists 

lim
Ax

Ay =  | im /(Xn +  Ax) — /(*„) 
Ax Ax

( )

(2)

we say that for the given value x =  x0 the function is différentiable 
or (which is the same thing) has a dérivative.

If a function is différentiable at every point of some interval 
[a, b] or (a, b), we say that it is différentiable over the interval.

Theorem. If a function y — f(x) is différentiable at some point 
x — x0, it is continuous at that point.

Indeed, if
I:_  A y c, , ,

s
Прямоугольник

s
Прямоугольник



3.4 Different iability of Functions 71

then

^  =  / '(*o )  +  Y .

where y is a quantity that approaches zéro as Ax -*■ 0. But then

Ay = f  (*0)Ax +  yAx

whence it follows that Ay-+0  as Ajc->0; and this means that 
the function f (x) is continuous at the point x„ (see Sec. 2.9).

In other words. a function cannot hâve a dérivative at points 
of discontinuity. The converse is not true; from the fact that at 
some point x — x0 the function y — f(x) is continuous, it does not 
yet follow that it is différentiable at that point: the function 
f(x) may not hâve a dérivative at the point x0. To convince our- 
selves of this, let us examine several cases.

Example I. A function f (x) is defined on an interval [0, 2] as follows (see 
Fig. 61):

f(x) =  x w h e n O < x < I ,  
f(x) =  2x— i when 1 < jc < 2

At x =  \ the function has no dérivative, although it is continuous at this point. 
Indeed, when Ax > 0 we hâve

llm lim I 2 ( l + ^ ) - l ] - [ 2 - . - l j =  2Ax= 2

Ax->0 A x  Ajc-*>0 &X-+Q A x

when Ax < 0 we get

lim
A*-»o

/ ( 1 + A x ) - / ( 1 )
Ax

lim
Ajc-̂ 0

(1 +  Ax)— 1 
Ax AX

ii Ax ,lim — = 1  
0 Ax

Thus, this limit dépends on the sign of Ax, and this means that the function 
has no dérivative* at the point x = l .  Geometrically, this is in accord with 
the fact that at the point x = I  the given “curve” does not hâve a definite tan-
gent line.

Now the continuity of the function at the point x = l  follows from the fact 
that

A y  =  Ax when Ax < 0,
Ay =  2Ax when Ax > 0

and, therefore, in both cases A y-> 0 as Ax 0.

* The définition of a dérivative requires that the ratio ~  should (as Ax-*0)

npproach one and the same limit regardless of the way in which Ax approaches 
zéro.
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72 Ch, 3. Dérivative and Differential

Example 2 . A function y = [ /  x , the graph of which is shown in Fig. 62, 
is defined and continuons for ail values of the independent variable.

Let us try to find out whether this function has a dérivative at x =  0; to 
do this, we find the values of the function at x =  0 and at x =  0 +  Ax: a tx  =  0

we hâve y =  0. at x =  0 +  Ax we hâve y +  Ay =  ’j /A x .

Therefore,

Ay =  i /X x

Find the limit of the ratio of the incrément of the 
ment of the argument:

function to the incre-

lim
A x - 0

Ay
Ax

lim
Ax -  o

VT*
Ax

lim ■ 1___=  -foo
Ax2

Thus, the ratio of the incrément of the function to the incrément of the argu-
ment at the point x =  0 approaches infinity as Ax 0 (hence there is no limit). 
Consequently, this function is not différentiable at the point x =  0. The tangent

Tl
to the curve at this point forms, with the x-axis, an angle , which means 

that it coincides with the y-axis.

3.5 THE DERIVATIVE OF THE FUNCTIONy  =  xn, n A POSITIVE INTEGER

To find the dérivative of a given function y = f(x), it is neces- 
sary to carry out the following operations (on the basis of the 
general définition of a dérivative):

(1) increase the argument x by Ax, calculate the increased 
value of the function:

y + Ay = f(x + Ax)

(2 ) find the corresponding incrément in the function:
Ay = f{x+ Ax)— f(x)
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3.5 The Dérivâtwe of y =  xn, n a Positive Integer 73

(3) îorm the ratio of the incrément in the function to the in-
crément in the argument:

Aÿ__f (*+A.*)—/ (t)

A*-  A*

(4) find the limit of this ratio as A* -> 0:

â*-0 A*-0 ÛAC

Here and in the following sections, we shall apply this general 
method for evaluating the dérivatives of certain elementary func- 
tions.

Theorem. The dérivative of the function y = xn, where n is a 
positive integer, is equal to nxn~1; that is,

if y = xn, then y' — nx"~1 (I)

Proof. We hâve the function
y = xn

(1) If x receives an incrément Ax, then
y + Ay = (x +  Ax)n

(2 ) Applying Newton’s binomial theorem, we get 

Ay =  (* +  Ax)n—xn =

=  xn + j X n- 1Ax + n{" ~ l)xn- 2(Ax)i + . .. +(Ax)n—xn

or

A y =  nxtt~l Ax+  /l(|t~ l) xn~2 (A*)* +  . . .  +  ( Ax)n

(3) We find the ratio

^  -  nx"-1 +  n l)-xn~ 8 Ax + . . .  +{Ax)n~1

(4) Then we find the limit of this ratio:

y' =  lim ^

: lim f
L
nx‘ » +  I)xn- ;i Ax + . . .  +  (A*)n-1j = nx

consequently, y ' = n x n~l, and the theorem is proved.
Example 1. y =  xb, y' =  5x6“ 1 =  5jc4.

Example 2 . y =  x, y ' =  lx1" 1, y ' =  1. The latter resuit has a simple géo-
métrie interprétation: the tangent to the straight line y =  x for any value of
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74 Ch. 3. Dérivative and Differential

x coïncides with this line and, consequently, forms with the positive jc-axis an 
angle, whose tangent is 1.

Note that formula (I) also holds true when n is fractional or 
négative. (This will be proved in Sec. 3.12).

Example 3. y =  Y x .
Let us represent the function in the form of a power:

l

Then by formula (I), taking into considération what

' 1 T"1
y = y x

we hâve just said, we get

or

y ' = —  y 2 Vx

Example 4. y =  — .
x y  x

Represent y  in the form of a power function:
3

Then

3

2x2 y  x

3.6 DERIVATIVES OF THE FUNCTIONS 
y =  sin x, j / =  cosjc

Theorem 1. The dérivative of sinjc is c o s jc , or 
if y = sin jc, then y ' = c o s jc .

Proof. Increase the argument jc by A*; then
(1) y + Ay = sin(x + Ax);
/ o \  a  - / . A v  • o  jc  +  A j c — jc  J C + A J C  +  *(2) Aÿ =  sin (x +  Ajc) — sinjc =  2 sin —!—x----- cos -0 —

n  . A jc  (  , A jc
2 sin — cos ( * +  ~2

* *  A j c

n  . A jc  (  . A jc  \=  2 sinT . c o s U + T J ;
A jc

( , Ajc\
+~2j  ’

—
~2

sin —

(4) y ’ = lim — =  lim - r ~ *  ,im cos(x +  ̂ )  .
Ax-+o a x  A x -* o  fil A x -+ o  \  * J

( i l )
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3.7 Dérivatives of Some Expressions 75

But since

we get

lim
Ax-+o

1 •

y '=  lim cos(x +  ̂ )
AX-+ 0  \  •'

=  COS JC

This latter équation is obtained on the grounds that c o sjc  is a 
continuous function.

Theorem 2. The dérivative of c o sjc  is — sin.c, or
if ^ =  c o sjc , theny’ = — sinjc. (III)

Proof. Increase the argument jc  by A jc , then 
y +  Ay = cos (x +  A*)

JC +  AxA y =  cos (x +  Ax)—cos x = —2 sin ' — sin *+A/ + *

A j c

y’ =  lim ^ | =  lim
A j c -* o  a x  A x - + o

Ax
T

Ajc

0  . A x . (  . Ajc\
=  — 2 s i n- j -  s m ^ + - 2-J

i  A j c

■sin (*  +  ^ )

- j r ~ sin ( * + ¥ )  ( * + t )
2

Taking into account the fact that sinjc is a continuous function, 
we finally get

y' =  —  s i n  jc

3.7 DERIVATIVES OF:
A CONSTANT, THE PRODUCT OF A CONSTANT BY A FUNCTION,

A SUM, A PRODUCT, AND A QUOTIENT

Theorem 1. The dérivative of a constant is equal to zéro; that is,

if y — C, where C =  const, then y' = 0 . (IV)

Proof. y = C is a function of jc  such that the values of it are 
equal to C for ail x.

Hence, for any value of j c ,

y = f{x) = C
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76 Ch. 3. Dérivative and Differential

We increase the argument x by Ax (Ax=^0). Since the function y 
retains the value C for ail values of the argument, we hâve

y + Ay = f (x  + Ax) = C

Therefore, the incrément of the function is 
Ay = f (x + Ax)— f(x) = 0

the ratio of the incrément of the function to the incrément of the 
argument

and, consequently,

that is,

y '=  Km =  0
Ax 0 a x

y' =  o

The latter resuit has a simple géométrie interprétation. The 
graph of the function # =  C is a straight line parallel to the x-axis. 
Obviously, the tangent to the graph at any one of its points 
coïncides with this straight line and, therefore, forms with the 
x-axis an angle whose tangent y' is zéro.

Theorem 2 . A constant factor may be taken outside the dériva-
tive sign, i.e.,

if y = Cu(x) (C — const), then y' = Cu' (x). (V)

Proof. Reasoning as in the proof of the preceding theorem, we 
hâve

y = Cu (x) 
y + Ay = Cu(x + Ax)

Ay = Cu (x-(- Ax)—Cu (x) = C [u (x +Ax) — u (x)]
A y _r  u (x +  At) — u {x)
Â*~"ü Âv

y ’ lim ^ r ~ C  lim
A x  ->■ 0 a x  A x - t - 0

U [X +  ôiX) —  U (X)

Ax i.e., y =Cu' (x)

Example 1. y =  3-

, = 3 (TL y = 3 G - i y = 3 ( - i >

or
3

2x V J

3
2 X

a
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3.7 Dérivatives of Sottie Expressions 77

Theorem 3. The dérivative of the sum of a finite number of diffé-
rentiable functions is equal to the corresponding sum of the dériva-
tives of these functions. * ,

For the case of three terms, for example, we hâve
y = u(x) +  v(x) + w(x), y' = u’ (x)+v'  (x) +  w'(x) (VI)

Proof. For the values of the argument x
y = u + v + w

(for the sake of brevity we drop the argument x in denoting the 
function).

For the value of the argument x + Ax we hâve 
y +  Ay =  (u +  Au) +  (v +  Au) +  (w +  Aw)

where A y, Au, Aty and A w are incréments of the functions y, u, 
v and w, which correspond to the incrément Ax in the argument 
x. Hence,

a a * , A 4u , io  . 4 »Ay = A u-t Av + Aw, -  = -  +  -  +  —

yf = lim
A* -► 0

Ay
Ax A ATlim lim li,nA x  A* -► 0 Ajc 0

Aw
Âx

or
y’ = u' (x)+v' (x) + w’ (x)

bxample 2 . y =  3x4
1

V T

= 3-4^

and so

y' =  \2x*

1

Theorem 4. The dérivative of a product of two différentiable 
functions is equal to the product of the dérivative of the first fun-
ction by the second function plus the product of the first function 
by the dérivative of the second function; that is,

if y = wo, then y' = u'v +  uv’. (VII)

* The expression y =  u (x )— (jc) is équivalent to y  =  u(x)-\-(—l)u(x) and 
V' = [ « ( * ) + ( — >) v (x)]' =  u' (* )+ [— v (*)l' =  u' (x)—v' (x).
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78 Ch. 3. Dérivative and Differential

Proof. Reasoning as in the proof of the preceding theorem, we 
get

y = uv
y + Ay = (u + Au) (v +  At>)

A y —-(u + Au) (o +  Av)— uv =  Auv +  u Av +  Au Av
ày
Ax

Au . Av . A 
= â ï ü + m^ + Aw

Au
Ax

y ' — lim lim x~y+ lim u ^ 4 - lim Au ^ -
A * -n A *  1 Ar^n Ajc A«.^n AxA x - A x  - A x  -

= L ^ ) v + u  V m ^ + litn Au lim̂A x  - , Ax A x A x  - Ax

(since u and v are independent of Ax).
Let us consider the last term on the right-hand side:

lim Au lim -r-
A x-> 0 A x  -► 0

Since u(x) is a différentiable function, it is continuous. Conse- 
quently, lim Au =  0. Also,

A x - + 0
i • Au , .lim -r~ = v =7^00

A* -* 0

Thus, the term under considération is zéro and we finally get
y' = u’v-\-uv’

The theorem just proved readily gives us the rule for differentiating 
the product of any number of functions.

Thus, if we hâve a product of three functions
y =  uvw

then, by representing the right-hand side as the product of u and 
(vw), we get y' — u’ (vw) -ÿ-u (vw)' — u’vw-\-u (v'w + vw') = u’vw-\- 
+  uv'w + uvw'.

In this way we can obtain a similar formula for the dérivative 
of the product of any (finite) number of functions. Namely, if 
y = u lut . . .  then 

y — utu2 • • un- xun uxu2 . . .  un_xun-\-. . .  -)-UjMj . . .  un_xun 
Example 3. If y =  x2 sin x, then

y ' =  (x2)' sin x + x2 (sin x)' =  2x sin * + * 2 cos x 

Example 4. If y — V T  sin x cos x, then

y' = (  V x ) ’ sin x c o sx  +  Ÿ~x (sin x)' coax +  V T  sin x(cos x)’

= — 7=  sin x cos x +  V T  cos x cos * +  V T  sin x (— sin x)
2 V T

= — —  sin x c o sx  +  V T  (cos2 x —sin2 x )=  S-n-̂ *4- V T  cos 2x 
2 Y x  4 V T
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?.7 Dérivatives of Sortie Expressions 79

Theorem 5. The dérivative of a fraction (that is, the quotient 
obtained by the division of two functions) is equal to a fraction 
whose denominator is the square of th& denominator of the given 
fraction, and the numeraior is the différence between the product of 
the denominator by the dérivative of the numerator, and the pro-
duct of the numerator by the dérivative of the denominator; i.e.,

if
U

V  ’
then y' u'v— uv'

ü5 (VIII)

Proof. If A y. Au, and Au are incréments of the functions y, u, 
and v, corresponding to the incrément Ax of the argument x, then

y+by--  

A y = 

A y

u-{-Au 
’ v +  Av 
u +  Au v Au— u Av
u +  Av v
v Au— u Av 

Ajc

v (t/ +  Av) 
Au Av
Ax

V  —  u
Ax

Ax u(ü +  Au)

y ' =  Km =
A* -► 0 a x  Ax

u (y +  Av) 
Au

lim

Av
- r - v — u —
Ax Ax

0 v(v  +  Av)

v lim £ * _ «  lim ÈS. 
A x  -» 0 Ax A x  -► 0 Ax

v lim (ü +  Aü)
A x  0

Whence, noting that Av—►() as Ax

y '
u'v— uv'

0 , * we get

Example 5. If y —----- - ,  then
cos x

, (x ^ 'co sx —X3 (cos a:)'_3x2 cos x -f- x3 sin x
y  ~  cos2x C O S *  X

Note. If we hâve a function of the form

where the denominator C is a constant, then in differentiating 
this function we do not need to use formula (VIII); it is better 
to make use of formula (V):

Of course, the same resuit is obtained if formula (VIII) is applied.

•lim Ao =  0 since v(x) is a différentiable and, consequently, continuons
A x  -► 0

function.
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80 Ch. 3. Dérivative and Differential

„  , _ ir  COS X . |
Example 6 . If y =  ——  , then

, . / _ ( co s*)#_ s\nx
y  -  7  —  — —

3.8 THE DERIVATIVE OF A LOGARITHMIC FUNCTION

Theorem. The dérivative of the functioti loga x is logae, that is,

if y =  loga jc, then y' =  i-  loga e (IX)

Proof. If A y is an incrément in the function ^ =  log a jc that 
corresponds to the incrément Ajc in the argument jc, then

y “t- A y =  log a (jc Ajc)

ày  =  log .  (* +  Ax) — l0g„ X = loga “ ^  =  log„ ( 1 +

S . - L *  ( , + Ü )à x  A* loga ^ * J

Multiply and divide by jc the expression on the right-hand side of 
the latter équation:

A y
We dénoté the quantity — by a. Obviously, a —>-0 for the 

given x, and as Ajc—>-0. Consequently,

^  =  7 loga ( l+ « ) “

But, as we know from Sec. 2.7,
i

lim (1 + a ) “ = e
a-* ao

But if the expression under the sign of the logarithm approaches 
the number e, then the logarithm of this expression approaches 
logae (in virtue of the continuity of the logarithmic function). 
We therefore finally get

y ’ =  lim X7 =  lim T log“( 1 + a ^  =  T log«eAx -► 0 a x  a  -► 0 *  x

Noting that l°ga e =  -j^ - , we can rewrite the formula as follows:
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3.9 The Dérivative of a Composite Function 81

The following is an important particular case of this formula: 
if a = e, then lna =  ln e = l ;  that is,

if y =  ln x, then =  — • (X)

3.9 THE DERIVATIVE OF A COMPOSITE FUNCTION

Given a composite function y = f(x), that is, such that it may 
be represented in the following form:

y — F(u), u = <p(x)

or y =  F [<p(x)] (see Sec. 1.8). In the expression y = F(u), u is 
called the intermediate argument.

Let us establish a rule for difîerentiating composite functions. 
Theorem. I f  a function u =  q>(x) has, at some point x, a dériva-

tive u* =  tp'(x), and the function y = F(u) has, at the corresponditig 
value of u, the dérivative y'u = F'(u), then the composite function 
y = F[<p (x)} at the given point x also has a dérivative, which is 
equal to

y’x =  F ’u (u) q>' (x)

where for u we must substitute the expression u =  <p(x). Briefly,

y'x= y'uu’x

In other words, the dérivative of a composite function is equal to 
the product of the dérivative of the given function with respect to 
the intermediate argument u by the dérivative of the intermediate 
argument with respect to x.

Proof. For a definite value of x we will hâve

« =  <p(x), y = F (u)

For the increased value of the argument x +  Ax,

« +  Am =  <p(x +  Ax), y +  Ay = F (u +  Au)

Thus, to the incrément Ax there corresponds an incrément Au, 
to which corresponds an incrément Ay, whereby Au—►O and 
A y —*-0 as Ax—►O. It is given that

lim
-*■ 0 Au = y u

From this relation (taking advantage of the définition of a limit) 
we get (for Au^O )

i> 2081

(1)
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82 Ch. 3. Dérivative and Differential

where a —►O as Au—«-0. We rewrite (1) as
A y — y'uAu +  a  Au (2)

Equation (2) also holds true when Au =  0 for an arbitrary a, 
since it turns into an identity, 0 =  0. For Au =  0 we shall assume 
a  =  0. Divide ail ternis of (2) by A*:

Ay i Au . A«
Â I = ^ Â I  +  a ÀI <3>

It is given that

lim ^  = ux, lim a  =  0
Ax -* 0 “ * Ax 0

Passing to the limit as Ax—>-0 in (3), we get

y'x=y'u“x (4)
Example 1. Given a function y =  sin (x2). Find y x. Represent the given 

function as a function of a function as follows:

y =  sm u t u =  x2

We find

y'u =  cos u, ux =  2x

Hence, by formula (4),

y'x =  y u U x = c o s u -2 x

Replacing u by its expression, we finally get

y'x =  2jc cos (jc2)

Example 2 . Given the function y =  (ln*)3. Find yx*
Represent this function as follows:

y — u3, u =  \nx

We find

0« =  3u2, ux = ^

Hence,

y 'x = 'iu i  -^-=3 (ln *)* -i-

If a function y = f(x) is such that it may be represented in the 
form

y=F(u) ,  u =  <p(u), v = ty(x)

the dérivative yx, is found by a successive application of the fore- 
going theorem.

Apptying the proved rule, we hâve

y 'x= y'uUx
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3.10 Dérivatives of y  =  tan x, y — c o tx ,  y =  ln | X | 83

Applying the same theorem to find ux, we hâve

Substituting the expression of ux into the preceding équation, 
we get

y'x =  y'uU'vV’x (5)
or

y'x^F'u (v)

Example 3. Given the function y =  s\n [(ln x)3). Find ifx. Represent the func- 
tion as follows:

y =  sinw, u =  v3, v =  lnx

We then find

r ' O 5 ' ^• y u =  cosu t uv =  3v2, vx=  —

In this way, by formula (5 ), we get

or, finally,

y x =  y u u'v v'x =  3 (cos u) v2 ~  

y'x — cos [(In x)3l*3 (ln x)2 -i*

It is to be noted that the function considered is defined only for x > 0 .

3.10 DERIVATIVES OF THE FUNCTIONS j>:= tanx, 
y  =  cotjc, .y =  ln \x \

Theorem 1 . The dérivative of the function tan* is , i. e., 

*/ y = tan x, then y' =  . (XI)

Proof. Since
_ sin x

V ~~ cos x

by the rule for differentiating a fraction [see formula (VIII), 
Sec. 3.7] we get

, _  (sin x)' cos x — sin x (cos x)' __ cos x cos x — sin x (— sin x) 
y cos2 x cos2 x

_ cos2 x +  sin2 x 1̂  
cos2 x ~  cos2x

Theorem 2 . The dérivative of the function cotx is — , i .e.y

if
1
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Proof. Since y =  , we hâve
v sin x *

y
(cos x)' sin x — cos jc (sin x)’ 

sin* x

Example 1. If y =  tan Y  x, then

y =■
1

cos2V x
(Vx Y

— sin x sin x — cos x cos x 
sin2 x

sin2 * +  cos2 x_ I
sin2 x ~~ sin2 x

1______1

2 Y  x cos2 Y  x

Example 2 . If y =  ln cot*, then

y' =  —\ — (cot x)1 = — —  ( ------------- \
cotjc cotx \  sin2 x J

I
cos x sin x

2
sin 2x

Theorem 3. The dérivative of the function ln \x \ (Fig. 63) is —, i. e.y

if t/ =  ln|a:|, 

then y ’ =  — .
(XIII)

Proof. (a) If x >  0, then \x\ = x, ln | *[ =  I n a n d  therefore

(b) Let x < 0 .  Then |x | =  — x. But
ln | x | =  ln (— x)

(lt will be noted that if x < 0 ,  then — x >  0.) Let us represent 
the function i/ =  ln(— x) as a composite function by putting

y — ln u, u — — x
Then

yx=y'uU x= --i— i ) = ~ ( — 1) =  4 -

And so for négative values of x we also hâve the équation

Hence, formula (XIII) has been proved for any value of x=£ 0. 
(For x =  0 the function ln |* | is not defined.)
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