Lecture 6

THE NUMBER e

Let us consider the variable

1 \»
(1+%)
where n is an increasing variable that takes on the values 1,
2,3, ....
Theorem 1. The variable (l +%)n, as n— oo, has a limit bet-
ween the numbers 2 and 3.
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Proof. By Newton’s bincmial formula we have

(l +;ll—)n=l +_lr_;_%+n(ln.;l) . (_1_>2+n(n—l.13.(;—2) (i)a

n n

o +n(n—l)(n—2)...[n—(n—l)] (_l_)" 1)

1.2..... n n

Carrying out the obvious algebraic manipulations in (1), we get
(44 =117+ (1) (1)
+ﬁ(1—‘;‘>(1—%)~-(1—":1) @)

From the latter equality it follows that the variable (1 +—,IT)"

is an increasing variable as n increases.
Indeed, when passing from the value n to the value n 1, each
term in the latter sum increases,
1 1 1/ 1
TT§(l.——-> <ﬁ\l————n+l) and so forth,

n

and another term is added. (All terms of the expansion are posi-
tive.)

We shall show that the variable (l —|-%>n is bounded. Noting
that (1—%) <, (1——:;) <l ——2—) <1, etc., we obtain from
expression (2) the inequality

1\~ 1 1 1
(1 +7> < 1"*‘1"'1’34‘1-2-3‘*'“' +1eE

Further noting that

1 | 1 | 1 1
1-2-3<2_2' 1-2-3.4<2—3' 1-2-...-n<2n—1

we can write the inequality

(1)< Tk lb gt gt g

\

—

The grouped terms on the right-hand side of this inequality form
a geometric progression with common ratio q=% and the first
term a=1, and so
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Consequently, for all n we get
(1 +%)"<3
From (2) it follows that
(1 +%>">2
Thus, we get the inequality
2< (144 )"<3 (3)

This proves that the variable (1 —}-%)nis bounded.

Thus, the variable l-l—% "is an increasing and bounded va-

riable; therefore, by Theorem 7, Sec. 2.5, it has a limit. This
limit is denoted by the letter e.

Definition. The limit of the variable (1 —{-%)n as n— oo is the
number e:

e—lim (1 +%)
By Theorem 6, Sec. 2.5, it follows from inequality (3) that the
number e satisfies the inequality 2<Ce<C3. The theorem is thus
proved.
The number e is an irrational number. Later on, a method will
be shown that permits calculating e to any degree of accuracy.
Its value to ten decimal places is

e=2.7182818284...

Theorem 2. The function ( 1 —]—%)x approaches the limit e as x
approaches infinity, lim ( 1 +%)x=e.

X—+®

Proof. It has been shown that 'l +-’ll—)"—+e as n—oo, if n

takes on positive integral values. Now let x approach infinity
while taking on both fractional and negative values.

(1) Let x—+4 0o. Each of its values lies between two positive
integers,

n<x<n+l1

* It may be shown that <1+%>"—>e as n— -+ even if n is not an
increasing variable quantity.
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The following inequalities will be fulfilled:
1 1

1
7>?>n+l
1 1 1
/ 1 \n+1 1 \x 1 n
(+a) "> () > ()
If x— 0o, it is obvious that n— o0o. Let us find the limits of
the variables between which the variable (l —|——)l?>x lies:

lim (1+%)"“= lim (1+%>"(1+%)

n-»+®o n-»+ e
. 1\+ .. 1
= Jim (14+3)" Jim (145)=e-1=e
1 n+1
14—
. 1 \» . ( n-l—l)
| —_—) =
n—»linan (1 +n+l) Ill-:Tw l_l_ l
n+1
. 1 n+l
="ET°°<1+"+1) =f —¢
li I - 1
Jm (1)
Hence, by Theorem 4, Sec. 2.5,
. 1 \*
—\" = 4
xlfﬂ-noo (l + x) ¢ ( )
(2) Let x——o00. We introduce a new variable {=— (x+1) or

x=—(t+1). When £— + oo, then x——oo0. We can write
lim (I‘I";—)x: lim (l 1 >—t—1= lim ( ¢ )—t—l

x> = ot \ EFHT foroo \E1
: P4 1\t+1 : 1 \t+1
- 1i (_) —~ 1 [+ L
Jim (55 )7 = lim (1+7)
. 1 \¢ 1
—,‘:Tw(‘+7)(‘+7)—""—"

The theorem is proved. The graph of the function y=(l+%)x
is shown in Fig. 45. '
If in(4) we put %:a, then as x — oo we have a —0 (but a=0)
and we get
1
lim (1 +a)* =e

-0
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Examples:
y tim (142)" = 1m (12 141V
@ i (14)" = im (142" (14+)
—am (1LY wm (1) e
=tm (7 ) m (147) =ert=e
o tim (141 \F— } [\* 1\* I\*
@ dm (14+5)"=1m (145 ) (145)" (1+5)
— lim (1+i)x- im (14— lim <l+—l->x—e-e-e—e3
_x»m X x> » \ ) X > ® X — T

3) lim (1+%)”= lim (|+—> —e.

X—>® y—> o

+3 — +3 3
@) lim ("+3>x — lim <" 1+4\x lim (H——)H
x> o \X—1 X—>o x—1 X > ®
I 4 \(x=1)+4 ) y+4
—x'i“w(“m) =y‘2"w(‘+‘y‘)
4\ (
= lim <l+——> o lim 14— > —et. | =eb.
y—> o y—>oo\\

Note. The exponential function e* plays a very important role
in mathematics, mechanics (oscillation theory), electrical and radio
9\
4\

y=(r+4)”

+
-1} 0
Fig. 45 Fig. 46

y=e Y= %

\ ~
Al

R

~

engineering, radiochemistry, etc. The graphs of the functions
y=¢€* and y=e~* are shown in Fig. 46.

NATURAL LOGARITHMS

Earlier we defined the logarithmic function y=log, x.
The number a is called the base of the logarithms. If a=10,
then y is the base-10 (common) logarithm of the number x and
is denoted y=1logx. In school courses of mathematics we have
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tables of common logarithms, which are called Briggs’ logarithms
after the English mathematician Briggs (1561-1630).

Logarithms to the base e=2.71828... are called natural or
Napierian logarithms after one of the first inventors of logarithmic
tables, the Scotch mathematician Napler (1550-1617).* Therefore,
if @ =x, then y is called the natural logarithm of the number x.
In writing we have y=Inx (after the initial letters of logarithmus
naturalis) in place of y=1log,x. Graphs of the function y=Inx
and y=logx are plotted in Fig. 47.

Y} yslnx___
{ y,=logx

A; log 10=1
0 9 0 X

Fig. 47

Let us now establish a relationship between common and
natural logarithms of one and the same number x. Let y-—=Ilogx
or x=10Y. We take logarithms of the left and right sides of the
latter equality to the base e and get Inx=ylnl0. We find

y= l'ril'lﬁ In x, or substituting the value of y, we have log x= Hlm In x.

Thus, if we know the natural logarithm of a number x, the
common logarithm of this number is found by multiplying by the

factor M=ﬁ ~ 0.434294, which factor is independent of x. The

number M is the modulus of common logarithms with respect to
natural logarithms:
logx=MIn x

If in this identity we put x=e, we obtain an expression of the
number M in terms of common logarithms:

loge=M(lne=1)

Natural logarithms are expressed in terms of common logarithms
as follows:

l —_— l

1
5 = 2.302585

* The first logarithmic tables were constructed by the Swiss mathematician
Biirgi (1552-1632) to a base close to the number e.
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CONTINUITY OF FUNCTIONS

Let a function y=f(x) be defined for some value x, and in
some neighbourhood with centre at x,. Let y,=f(x,).

If x receives some positive or negative (it is immaterial which)
increment Ax and assumes the value x=x,+ Ax, then the func-
tion y too will receive an increment Ay.

The new increased value of the function ”4 M
will be y,+ Ay=f(x,+ Ax) (Fig. 48). 4
The increment of the function Ay will M, \ Ny

be expressed by the formula
Ay=f (%o + Ax)—f (%)

Definition 1. A function y=f(x) is b A

called continuous for the value x=x, (or x
at the point x,) if it is defined in some 0 ﬁm
neighbourhood of the point x, (obvious- _
ly, at the point x, as well) and if Fig. 48

lim Ay=0

dim, 8y 0
or, which is the same thing,

AIXITO [f (x, + Ax)—F (%,)] =0 (2)

The continuity condition (2) may also be written as follows:
lim f(xo+Ax) =f(xo)
Ax >0

or
lim £ (x) = f (x,) 3)
but
x,= lim x

Hence, (3) may be written thus:
lim f(x)=Ff (lim x) (4)

X > X, X > X,
In other words, in order to find the limit of a continuous function
as x—x,, it is sufficient, in the expression of the function, to
put the value x, in place of the argument x.

In descriptive geometrical terms, the continuity of a function
at a glven point signifies that the difference of the ordinates on
the graph of the function y=f(x) at the points x,+ Ax and x
will, in absolute value, be arbitrarily small, provided |Ax| is
sufficiently small.
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Example 1. We shall prove that the function y=x? is continuous at an
arbitrary point x,. Indeed,
Yo=13, Yo+ Ay =(xo+Ax), Ay=(xo+Axf—xd=2x,Ax+ Axt,
lim. Ay= 11m (2x0 Ax+4Ax?)=2x, lim Ax-+} lim Ax. lim Ax=0
Ax—>0 Ax—>0 Ax—>0 Ax -0

for any way that Ax may approach zero (Figs. 49a and 49b).

y“ Ax>0, Ay>0 ) Ax<0, Ay<0
Ay Ay
Ax Ar
I, xz 0 I, ~z
@) (b)
Fig. 49

Example 2. We shall prove that the function y=sin x is continuous at an
arbitrary point x,. Indeed,

Yo=-5in x4, Yo+ Ay=sin (x,-+} Ax),

Ay =sin (xq+ Ax)—sin xy =2 sin-A-2-JE . COS (xo +A—x)

It has been shown that lim smA——-O (Example 7, Sec. 2.5). The function

Ax >0 2

cos (x—|——2£> is bounded. Therefore, AEI_I:()Ay:O.

In similar fashion, by considering each basic elementary function,
it is possible to prove that each basic elementary function is con-
tinuous at every point at which it is defined.

We will now prove the following theorem.

Theorem 1. /f the functions f,(x) and f,(x) are continuous at
a point x,, then the sum ¢ (x)={f,(x)+f,(x) is also a function
continuous at the point x,.

Proof. Since f,(x) and f,(x) are continuous, on the basis of (3)
we can write

lim f, (x)=f,(x,) and lim f, (x) = f, (x;)

x—)xo x—)xo
By Theorem 1 on limits, we can write

lim ¢ (x) = lim [f, (x)+f, (x)]

L= lim f () lim ()=, (%) + Fa (k) = (x,)

Thus, the sum P (x)=f,(x)+f,(x) is a continuous function.
The proof is complete.
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Note, as a corollary, that the theorem holds true for any finite
number of terms.

Using the properties of limits, we cafi also prove the following
theorems:

(a) The product of two continuous functions is a continuous
function.

(b) The quotient of two continuous functions is a continuous func-
tion if the denominator does not vanish at the point under consi-
deration.

(c) If u=e@(x) is continuous at x=x, and f(u) is continuous at
the point u,=¢(x,), then the composite function f[p(x)] is con-
tinuous at the point x,.

Using these theorems, we can prove the following theorem.

Theorem 2. Every elementary function is continuous at every
point at which it is defined.*

Example 3. The function y=x? is continuous at every point x, and
therefore

lim x?= x;
x> X,

lim x2=32=9
x—+3

Example 4. The function y=sin x is continuous at every point and therefore

V2

2

. . T
lim sin x=sin —=
n 4
X = —

4

Example 5. The function y=e* is continuous at every point and therefore
lim e¥ =e8.
X—=>a

In(ldx . 1 —
Example 6. lim ————=1im —In(l4x)= lim In |(14+x)* |. Since
x>0 x x>0 X x>0
1

lim (14x)* =e and the function Inz is continuous for z >0 and, consequ-
x—>0

ently, for z=e,

1

1
lin:) In [(l+x)‘] =In [limo(l+x)"J =Ilne=1

Definition 2. If a function y=f(x) is continuous at each point
of a certain interval (a, b), where a < b, then it is said that the
function is continuous in this interval.

If the function is also defined for x=a and lim f(x)={(a),
x—+>a+0

it is said that f(x) at the point x=a is continuous on the right.

* This problem is discussed in detail in G. M. Fikhtengolts’ Fundamentals
of Mathematical Analysis, Vol. |, Fizmatgiz, Moscow, 1968 (in Russian).
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If lim f(x)=/f(b), it is said that the function f(x) at the point

x->b-0
x=2> is continuous on the left.

If the function f(x) is continuous at each point of the interval
(a, b) and is continuous at the end points of the interval, on the
right and left, respectively, then we say that the function f(x)
is continuous over the closed interval [a, b].

Example 7. The function y=ux® is continuous in any closed interval [a, b].
This follows from Example I.

If at some point x=1x, at least one of the conditions of conti-
nuity is not fulfilled for the function y=f(x), that is, if for x = x,
the function is not defined or there does not exist a limit lim f (x)

X+ X

or lim f(x) = f (x,) in the arbitrary approach of x — x,, a'ltl;ough
thexg;opressions on the right and left exist, then at x=x, the

function y=f(x) is discontinuous. In this case, the point x=x,
is called the point of discontinuity of the function.

Example 8. The function y=—;‘- is discontinuous at x=0. Indeed, the func-

tion is not defined at x=0.

. 1 . 1
lim —=+4w, Ilm —=—ow
x+04+0% x+0-0%

It is easy to show that this function is 1continuous for any value x # 0.
Example 9. The function y=2_; is discontinuous at x=0. Indeed,
1 1

lim 2* =, lim 2% =0. The function is not defined at x=0 (Fig. 50),
x-+04+0 x-+0-0

7\
4
y=2*
Yy
f} y=flx)
{
——————— dr —_————— 0 _JE
Canl a0
0 I y=flx) -1
Fig. 50 Fig. 51
Example 10. Consider the function f(x)=|—;T. For x < 0, |_xx|-=—.l' for
x>0, ———=1. Hence,
[*]
x
lim x)= lim =1,
x»o-of( ) x>0-0 [ %]

X
lim f(x)= lim —=1
x+0+0 (x) x-0+0 | x|
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the function is not defined at x=0. We have thus established the fact that
x
th . —_ . . c. — . . )
e function f(x) I_xf is discontinuous at x 0.(F1g 51)

Example 11. The earlier examined function (Example 4, Sec. 2.3) y =sin (l/x)
is discontinuous at x=0.

Definition 3. If the function f(x) is such that there exist finite
limits lim f(x)=f(x,+0) and lim f(x)=f(x,—0), but either

lim ft(;)-;e lim f(x) or the vaft]éo_of the function f(x) at x=x,

x+xo+0 X+x,—0

is not defined, then x= X, is called a point of discontinuity of the
first kind. (For example, for the function considered in Example 10,
the point x=0 is a point of discontinuity of the first kind.)

CERTAIN PROPERTIES OF CONTINUOUS FUNCTIONS

In this section we shall consider a number of properties of
functions that are continuous on an interval. These properties
will be stated in the form of theorems given without proof. *

Theorem 1. If a function y={f(x) is continuous on some inter-
val [a, b] (a<<x<Db), there will be, on this interval, at least one
point x=x, such that the value of the function at that point will

satisfy the relation
f(x) = (x)

where x is any other point of the interval, and there will be at least
one point x, such that the value of the function at that point will

satisfy the relation
f (xa) < F(x)

We shall call the value of the function f{x,) the greatest value
of the function y=Ff(x) on the interval [a, bf]. and the value of
the function f(x,) the smallest (least) value of the function on the
interval [a, b].

This theorem is briefly stated as follows:

A function continuous on the interval a<x< b attains on this
interval (at least once) a greatest value M and a smallest value m.

The meaning of this theorem is clearly illustrated in Fig. 52.

Note. The assertion that there exists a greatest value of the
function may prove incorrect if one considers the values of the
function in the interval a < x <b. For instance, if we consider
the function y=x in the interval 0 < x < 1, there will be no
greatest and no least values among them. Indeed, there is no least

* These theorems are proved in G. M. Fikhtengolts’ Principles of Mathema-
tical Analysis, Vol. 1, Fizmatgiz, 1968 (in Russian),
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value or greatest value of x in the interval. (There is no extreme
left point, since no matter what point x* we take there will be

a point to the left of it, for instance, the point %*; likewise,

y there is no extreme right point;
A .

consequently, there is no least
and no greatest value of the fun-
ction y=x.)

M M Theorem 2. Let the funct.on

m y=7[(x) be continuous on the inter-

0 a« 1, g bz val [a, b] and at the end points of
_ this interval let it take on values of

Fig. 52 different signs; then between the

points a and b there will be at
least one point x=c, at which the function becomes zero:

flc)=0, a<<c<b

This theorem has a simple geometrical meaning. The graph of a
continuous function y=f(x) joining the points M, [a, f(a)] and
M, [b, f (b)], where f(a) <0 and f(b) >0 g |

or f(a) >0 and f (b) <0, cuts the x-axis }

in at least one point (Fig. 53). 6 _____q"

f(o) /
7 : (Y R
0 v
f/aV —1—--,/’1>2
/
M][azf{a)] /,‘
Fig. 53 Fig. 54

Example. Given the function y=x*—2; y,_j=—1, y,—,=6. It is conti-
nucus in the interval [I, 2]. Hence, in this interval there is a point where

y=x"—2 becomes zero. Indeed, y=0 when x=}/2 (Fig. 54).

Theorem 3. Let a function y={f(x) be defined and continuous in
the interval [a, b]. If at the end points of this interval the function
takes on unequal values f(a)= A, f(b) =B, then no matter what the
number p between numbers A and B, there will be a point x=c
between a and b such that f(c)=p.
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The meaning of this theorem is clearly illustrated in Fig. 55.
In the given case, any straight line y= p cuts the graph of the
function y=Ff (x).

Note. It will be noted that Theorem 2 is a particular case of
this theorem, for if A and B have different signs, then for p one
can take 0, and then p =0 will lie between the numbers A and B.

y

yile

Fig. 55 Fig. 56

Corollary of Theorem 3. /f a function y=f(x)is continuous in some
interval and takes on a greatest value and a least value, then in this
interval it takes on, at least once, any value lying between the gre-
atest and least values.

Indeed, let f(x,)=M, f(x,)=m. Consider the interval [x,, x,].
By Theorem 3, in this interval the function y=f(x) takeson any
value p lying between M and m. But the interval [x,, x,] lies
inside the interval under consideration in which the function f (x)
is defined (Fig. 56).

COMPARING INFINITESIMALS
Let several infinitesimal quantities
a, B, v, ...

be at the same time functions of one and the same argument x
and let them approach zero as x approaches some limit a or in-
finity. We shall describe the approach of these variables to zero
when we consider their ratios.*

We shall, in future, make use of the following definitions,

Definition 1. If the ratio % has a finite nonzero limit, that
is, if lim%=A;éO, and therefore, lim%=;;—#=0, the infinites-
imals B and o are called infinitesimals of the same arder.

* We assume that the infinitesimal in the denominator does not vanish in
some neighbourhood of the point a,
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Example 1. Let a =x, P=sin2x, where x - 0. The infinitesimals o and B
are of the same order because
B

x+0 % xa0 X

sin 2x —9

Example 2. When x - 0, the infinitesimals x, sin 3x, tan2x, 7 In(l1-+x) are
infinitesimals of the same order. The proof is similar to that given in Example 1.

B

Definition 2. If the ratio of two infinitesimals o approaches

zero, that is, if lim—f‘—=0 and lim%=oo§. then the infinitesi-

mal B is called an infinitesimal of higher order than o, and the
infinitesimal a is called an infinitesimal of lower order than B.

Example 3. Let a=x, p=x" n > 1, x 0. The infinitesimal B is an infi-
nitesimal of higher order than the infinitesimal a since

. xn .
lim —=1lim x"-1=0
x>0 X x>0

Here, the infinitesimal a is an infinitesimal of lower order than p.

Definition 3. An infinitesimal B is called an infinitesimal of the
kth order relative to an infinitesimal o, if p and a* are infinitesimals

of the same order, that is, if limo—P;=A#=O.

Example 4. If a=x, p=x3, then as x - 0 the infinitesimal B is an infinite-
simal of the third order relative to the infinitesimal a, since

2023 x20x3

B

Definition 4. If the ratio of two infinitesimals -

B

<= 1, the infinitesimals p and a are called
equivalent infinitesimals and we write a ~ f.

approaches

unity, that is, if lim

Example 5. Let a =x and f=sin x, where x - 0. The infinitesimals e and
p are equivalent, since
Jim Sin%
x+0 X

=]

Example 6. Let o« =x, p=In(14-x), where x - 0. The infinitesimals & and
P are equivalent, since

lim

In(l4+x _,
x-0 X

(see Example 6, Sec. 2.9).

Theorem 1. If a and P are equivalent infinitesimals, their differ-
ence oo— B is an infinitesimal of higher order than o and than B.
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Proof. Indeed,
. _ot—P . p . . ﬁ_ .
llm—g—-——-—llm<l—-o—‘)—l—llm;-—-l——l—O

Theorem 2. If the difference of two infinitesimals a—f is an
infinitesimal of higher order than a and than B, then a and B are

equivalent infinitesimals.

Proof. Let lim a“ 0, then 1im(1.—5)=n or 1—1imﬂ=o,

@

B o— B _
or 1=lim2, i.e., a~p. If lim2E =0, then lxm(-p——-l)——O,
lim %‘-=1, that is, a ~ B.

Example 7. Let a=x, p=x-x3, where x — 0.

The infinitesimals & and P are equivalent, since their difference f —a =x?
is an infinitesimal of higher order than a and than B. Indeed,

im 2% — m £ = lim 22 —0
x+0 @ X0 X x-0

x3 x?
im P =% —m = _—tim ¥ _—0
x-+0 B x+0 X +x3 x-0 l+ 2
P +l
Example 8. For x — oo the infinitesimals a =
infinitesimals, since their difference a—B—f-;—';—l—%-_—x% is an infinitesimal
of higher order than a and than B. The limit of the ratio of @ and § is unity:
x+l
o Xt —|—l . ( 1 )
Iim ==lim—=lm——=1im|( 14— ) =1
>0 P xew _l. x+»o X X->® +x
x

Note. If the ratio of two infinitesimals g- has no limit and does

not approach infinity, then p and a are not comparable in the
above sense.

Example 9. Let a=x, ﬁzxsin%, where x — 0. The infinitesimals a and

p cannot be compared because their ratio %_—:sin% as x—0 does not ap-
proach either a finite limit or infinity (see Example 4, Sec. 2.3).
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