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Hence, the variable 2i!l£ lies between two quantities that hâve
the same limit (unity). Thus by Theorçm 4 of the preceding 
section,

lim — = 1

The graph of the function ÿ =  — is shown in Fig. 44.

Examples.
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2.7. THE NUMBER e

Let us consider the variable

( 1 + ^)"
where n is an increasing variable that takes on the values 1, 
2, 3...........

Theorem 1. The variable  ̂1 ~  , as n —*■<», has a limit bet-
ween the number s 2 and 3.
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48 Ch. 2. Limit. Continuity of a Function

Proof. By Newton’s binomial formula we hâve

j «(«—1)(«—2)...[n—(n—l)]  ̂ I ^

Carrying out the obvious algebraic manipulations in (1), we get

( 1 + tt) - l  +  l + r 2 ( l —1 ) + T i i ( 1—“î ) ! 1- t )

From the latter equality it follows that the variable ( l + - ^ ) "
is an increasing variable as n increases.

Indeed, when passing from the value n to the value n-(- 1, each 
term in the latter sum increases,

1̂ 2 ( 1 H”) <  T̂ 2 (  ̂ n^PÎ ) alld 50 f0rth>

and another term is added. (Ail terms of the expansion are posi-
tive.)

We shall show that the variable ^1 is bounded. Noting

that ^ 1 —-j J < 1, ( * —- ^ ) ( l — j ) < 1. etc., we obtain from 
expression (2) the inequality

( ! + ! ) • < . + .  . > ■ ■ • • '

Further noting that
1 - 2 ^  1-2-3 1.2*3.. . . - n

^  02 »1-2-3 ^ 2 2 ’ 1-2-3-4 *

we can write the inequality

( 1+ t ) ’ < i +  i + t + f + - - -

___ ___ < _ ! _

2« — 1

The grouped terms on the right-hand side of this inequality form 
a géométrie progression with common ratio q = y  and the first 
term a =  1, and so

( ! + - - )  < l  +  [ l + 4  +  i + - - -  +2^=ï]

.+[2 - ( i n < 3
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27. The Number e 49

Consequently, for ail n we get

From (2) it follows that

Thus, we get the inequality

2 < ( l + 7 r ) " < 3  (3)

This proves that the variable bounded.

Thus, the variable ^1 *s aîl increasing and bounded va-
riable; therefore, by Theorem 7, Sec. 2.5, it has a limit. This 
limit is denoted by the letter e.

Définition. The limit of the variable ^1 + - ^ " a s  n —* oo is the 
number e:

e =  lim
«-►oo \  * /

By Theorem 6, Sec. 2.5, it follows from inequality (3) that the 
number e satisfies the inequality 2 ^ e ^ 3 .  The theorem is thus 
proved.

The number e is an irrational number. Later on, a method will 
be shown that permits calculating e to any degree of accuracy. 
Its value to ten décimal places is

e =  2.7182818284...

Theorem 2. The function ^1 approaches the limit e as x

approaches infinity, lim ( 1 + — j =e.
X-p-CD \ X J

Proof. It has been shown that 1*e as n —* oo , if n
takes on positive intégral values. Now let x approach infinity 
while taking on both fractional and négative values.

(1) Let x —► -|- o o . Each of its values lies between two positive 
integers,

« <  tt+  1

* It may be shown that — t-e as n —>-+oo even if n is not an

increasing variable quantity.

4—2081
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50 Ch. 2. Limit. Continuity of a Function

The following inequalities will be fulfilled:

1 > - >  —  n ^  x ^  n +  1

1+  — > 1  +  - > H — r-î 1 n ^  1 x ^  1 n + 1

( 1 + I ) " +1 > ( 1 + t ) jc> ( , +^tt)"
If x —>-oo, it is obvious that n —►<». Let us find the limits of 

the variables between which the variable ^1 +4")* *̂es:

=  lim ( l + — V* • lira ( 1 + -M  = e - \ = e  n-  + .V  ' n J n^ + a>\
( l V
( 1+ïï+t )lim f  1

n-+ +  oo \
' ^ o V =  *‘m
n + W  n

\ n + l

1

lim 
/!-*• + 00

n + 1

K ^ r  .
Um ( l +  * )

n-ï + cc \  n-\- 1 J

Hence, by Theorem 4, Sec. 2.5,

lim ( l + T ) X =  tX-+ + 00 \ * /
( 4 )

(2) Let x — <-— o o .  We introduce a new variable t =  — ( x + l )  or 
x = —  (^  +  1 ) .  When t — >- +  o o ,  then x —►—o o .  We can write

J r . O + v ) * - , ! ™  ( ‘ - T T r ) " "
\ t  +1

= , l™ ( ^ r - ^ . o + T j '

- , a z ( ' + r ) ' ( ' + T ) ^ - ' - e

The theorem is proved. The graph of the function t / = ^ l + - j ) *

oo we hâve a —>-0 (but a=^=0)
is shown in Fig. 45.

If in (4) we put — =  a, then asx
X

and we get

lim (1 +  a ) “ =e  
« ■-*- 0
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2.8 Natural Logarithms 51

Examples:

(1) lim (
ri-* ct> \

1 \n  + &
1+ — J =  lim

n j  *

=  lim
n -* cd

(2) lim ( i + 4 ) 3* =  Um (
X -* CD \ XJ X -* CD \

=  lim
X - *  a lira !» \  XJ JC —► 00

'.?.('+7 );K)*('4 r
• lim f l +  — 'l • lim f l - f  — ^ =e-e-e = e3.

X  —► oo \  X J X J

(4) A ”.  A™. ( i i ^ r î )” ' = A m.  ( 1 + , 4 , r
/ 4 \ u - i )  + 4 / 4 \ ^  + 4

-A ™ . K —  ) “ A " . ( i + t )

“ A .  ( 1+ )  r  ■ A™. ( 1+ 7 ) , - * ‘-1 -'*•

Note. The exponential function e* plays a very important rôle 
in mathematics, mechanics (oscillation theory), electrical and radio

engineering, radiochemistry, etc. The graphs of the functions 
y = e* and y = e~x are shown in Fig. 46.

2.8 NATURAL LOGARITHMS

In Sec. 1.8 we defined the logarithmic function y = logax. 
The number a is called the base of the logarithms. If a =10, 
then y is the base-10 (common) logarithm of the number x and 
is dènoted y = logx. In school courses of mathematics we hâve
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52 Ch. 2. Limit. Conttnuiiy of a Function

tables of common logarithms, which are called Briggs’ logarithms 
after the English mathematician Briggs (1561-1630).

Logarithms to the base e =  2.71828... are called natural or 
Napierian logarithms after one of the first inventors of logarithmic 
tables, the Scotch mathematician Napler (1550-1617).* Therefore, 
if ey = x , then y is called the natural logarithm of the number x. 
In writing we hâve t/ =  ln* (after the initial letters of logarithmus 
naturalis) in place of y = \ogex. Graphs of the function y — Inx 
and ^ =  logjc are plotted in Fig. 47.

Let us now establish a relationship between common and 
natural logarithms of one and the same number x. Let y — logx 
or x =  10>\ We take logarithms of the left and right sides of the 
latter equality to the base e and get lnx =  r/lnl0. We find

^ =  n n ô lnjc’ or substituting the value of y, we hâve logx =  j^ïQlnx.
Thus, if we know the natural logarithm of a number x, the 

common logarithm of this number is found by multiplying by the
factor M =  j^ïq «  0.434294, which factor is independent of x. The
number M is the modulus of common logarithms with respect to 
natural logarithms:

log x =  M ln x
If in this identity we put x — e, we obtaih an expression of the 
number M in terms of common logarithms:

loge =  M (lne= 1)
Natural logarithms are expressed in terms of common logarithms 
as follows:

ln* = i ,og*
where

—  «  2.302585

* The first logarithmic tables were constructed by the Swiss mathematician 
Bürgi (1552-1632) to a base close to the number e.
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2.9 Continuity of Functioni 63

2.9 CONTINUITY OP FUNCTIONS

Let a function y = f(x) be defined for some value xt and in 
some neighbourhood with centre at xt . Let y^ = f  (x0) .

If x receives some positive or négative (it îs immaterial which) 
incrément Ax and assumes the value x = x 0 + Ax, then the func-
tion y too will receive an incrément A y.
The new increased value of the function 
will be 0o +  Aÿ =  /(xo +  Ax) (Fig. 48).
The incrément of the function A y will 
be expressed by the formula

Ay = f(x it +  Ax)— f (x0)

Définition 1. A function y = f(x) is 
called continuous for the value x = x9 (or 
at the point x0) if it is defined in some 
neighbourhood of the point x0 (obvious- 
ly, at the point x0 as well) and if

lim Au =  0
Ax-+ 0

or, which is the same thing,
lim [f(xo +  Ax)— f(xo)]=0  (2)

Ax-+0

The continuity condition (2) may also be written as follows:

lim /(*0 +  Ax) =  /(*„)

or
lim f(x) = f (x0) (3)

X-+ X9

but
xQ= lim x

X-+X9

Hence, (3) may be written thus:

lim f (x) — f  (lim x) (4)
x -* x 0 X-+X0

In other words, in order to find the limit of a continuous function 
as x —*xt , it is sufficient, in the expression of the function, to 
put the value x0 in place of the argument x.

In descriptive geometrical terms, the continuity of a function 
at a given point signifies that the différence of the ordinates on 
the graph of the function y = f(x) at the points x0 + Ax and x. 
will, in absolute value, be arbitrarily small, provided |Ax| is 
sufficiently small.
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54 Ch. 2. Limit. Continuity of a Function

Example 1. We shall prove that the function y =  x2 is continuous at an 
arbitrary point x0. Indeed,

y0 =  xl, y0 +  Ay =  (x0 +  Ax)2, Ay =  (*„ +  Ax)2—xl =  2x~Ax +  A*2,
lim Ay =  lira (2x0 Ax+ A*2) =  2x0 lim A * +  lim Ax- lim A x = 0  

A *-*0  Ax->»0 A x - > 0  A x-*0  A x-> 0

for any way that Ax may approach zéro (Figs. 49a and 496).

Fig. 49

Example 2. W e  shall prove that the function y =  sin jc is continuous at an 
arbitrary point x0. Indeed,

y„ =  sin x„, Vo +  Ay =  si n (x0 +  Ax),

Ay =  sin (*04-A*)— sin *0 =  2 sin ^ p  • cos 

Ax
It has been shown that lim sin-7r =  0 (Example 7, Sec. 2.5). The function

Ax -*0 *
cos l is bounded. Therefore, lim Ay =  0.

\  2 /  Ax->0

In similar fashion, by considering each basic elementary function, 
it is possible to prove that each basic elementary function is con-
tinuous at every point at which it is defined.

We will now prove the following theorem.
Theorem 1. I f  the functions f1(x) and f2 (x) are continuous at 

a point x0, then the sum (*) =  f\ (*) +  fi (*) ls û/so a function 
continuous a t the point x0.

Proof. Since f1(x) and /2 (x) are continuous, on the basis of (3) 
we can write

lim (x) =  /, (*0) and lim f2 (x) =  f2 (x4)
X-+X0 x -> x0

By Theorem 1 on limits, we can write 

Jim i|>(x) =  Jim [/,(*) +  /«(*)]

=  lim f x (x) +  lim f2 (x) =  (*0) +  f2 (x0) = (*0)
X-*Xo x - * x 0

Thus, the sum \|j (a:) =  (jc) +  / 2(jc) is a continuous function. 
The proof is complété.
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2.9 Continuity of Functions 55

Note, as a corollary, that the theorem holds true for any finite 
number of terms.

Using the properties of limits, we caft also prove the following 
theorems:

(a) The product of two continuous functions is a continuous 
function.

(b) The quotient of two continuous functions is a continuous func-
tion if the denominator does not vanish at the point under consi-
dération.

(c) I f  u = <p(x) is continuous at x = x0 and f(u) is continuous at 
the point u0 =  <p(x0), then the composite function f  [cp (x)] is con-
tinuous at the point x0.

Using these theorems, we can prove the following theorem.
Theorem 2. Every elementary function is continuous at every 

point at which it is defined.*
Example 3. The function y  =  xt  is continuous at every point x0 and 

therefore

lim xi = x l
x-*xa

lim ** =  3 * = 9  
x -* 3

Example 4. The function y =  sin x  is continuous at every point and therefore

V2
4 2
ji Vi t  

lim sin x =  sin — =  -

Example 5. The function y =  e* is continuous at every point and therefore 
lim ex =  ea.

x-+a

Example 6. lim
x-+Q

iim - i - ln ( l+ * )  =  ln [ ( ! + * ) • * ] .  Si
x-+0

Since

lim (1 + * )*  = e  and the function ln z is continuous for z > 0 and, consequ- 
*-►0
ently, for z =  e,

lim in [ ( ! + * ) * ]  = ln lim (1+je)*
jc ->0

* J = l n e =

Définition 2. If a function y = f(x) is continuous at each point 
of a certain interval (a, b), where a <  b, then it is said that the 
function is continuous in this interval.

If the function is also defined for x = a and lim /(*) =  / (a),
jc-*a + 0

it is said that f(x) at the point x — a is continuous on the right.

* This problem is discussed in detail in G. M. Fikhtengolts* Fundamentals 
of Mathematical Analysis, Vol. 1, Fizmatgiz, Mosçow, 1968 (in Russian).
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56 Ch. 2. Limit. Continuity of a Function

If lim f(x) = f(b), it is said that the function f{x) at the point
x-*b-0

x = b is coniinuous on the left.
If the function f(x) is continuous at each point of the interval 

(a, b) and is continuous at the end points of the interval, on the 
right and left, respectively, then we say that the function f(x) 
is continuous over the closed interval [a, b].

Example 7. The function y — x* is continuous in any closed interval [a, £>]. 
This follows from Example 1.

If at some point x — x0 at least one of the conditions of conti-
nuity is not fulfilled for the function y = f(x), that is, if lorx = x0 
the function is not defined or there does not exist a limit lim f(x)

or Ym f (x) =£ f (x0) in the arbitrary approach of x -*■ x0, although
X -+ X q

the expressions on the right and left exist, then at x = x0 the 
function y = f(x) is discontinuons. In this case, the point x = x0 
is called the point of discontinuity of the function.

Example 8 . The function y = — is discontinuous at * =  0. Indeed, the func-

tion is not defined at jc =  0 .

lim — =  - f  oo, lim — =  — o© 
jc-*.0 + o x  x - * 0 - o  x

It is easy to show that this function is continuous for any value x 96 0 .

Example 9. The function y =  2 X is discontinuous at x =  0. Indeed,

lim 2 X = 00 , lim 2 X = 0 . The function is not defined at jc =  0 {Fig. 50).
*-►0 + 0 *-*-0-0

yf(x) -1

y-f(x)

Fig. 51

Example 10. Consider the function / ( * ) = - — - .  For x <  0, — j

x
x > 0, —r = l .  Hence,

1*1

■ 1, for

lim f (x) =  lim -i ■1. = — 1, 
-*•0-0 x ^o - oW

lim / {x) =  lim -r̂ — ~  1 
x-*o + o *->o + o I x I
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2.10 Certain Properties of Continuous Functions 67

the function is not defined at * =  0. We hâve thus established the fact that 

the function / ( * ) = - — j- is discontinuous at x =  0^(Fig. 51).

Example 11. The earlier examined function (Example 4, Sec. 2.3) i/ =  sin (l/x)  
is discontinuous at x =  0.

Définition 3. If the function f(x) is such that there exist finite 
limits lim / (x) = f (x0 +  0) and lim f(x) = f (x0 — 0), but either

x-+xo +  0 x -*x Q- 0

lim f(x)=£ lim f(x) or the value of the function f(x) at x= x0
x - * o  + 0 x -*x 0-Q

is not defined, then x = x0 is called a point of discontinuity of the 
first kind. (For example, for the function considered in Example 10, 
the point x =  0 is a point of discontinuity of the first kind.)

2.1» CERTAIN PROPERTIES OF CONTINUOUS FUNCTIONS

In this section we shall consider a number of properties of 
functions that are continuous on an interval. These properties 
will be stated in the form of theorems given without proof. *

Theorem 1. I f a function y = f (x) is continuous on some inter- 
val [a, b] ( a ^ x ^ b ) ,  there will be, on this interval, at least one 
point x = xt such that the value of the function at that point will 
satisfy the relation

f {* i ) >f (x )

where x is any other point of the interval, and there will be at least 
one point xt such that the value of the function at that point will 
satisfy the relation

/(* * )< /(* )

We shall call the value of the function f^ x j  the greatest value 
of the function y = f  (x) on the interval [a, b], and the value of 
the function f (xa) the smallest (least) value oi the function on the 
interval [a, b].

This theorem is briefly stated as follows:
A function continuous on the interval a ^ x ^ . b  attains on this 

interval (at least once) a greatest value M and a smallest value m.
The meaning of this theorem is clearly illustrated in Fig. 52.
Note. The assertion that there exists a greatest value of the 

function may prove incorrect if one considers the values of the 
function in the interval a <  x <  b. For instance, if we consider 
the function y = x in the interval 0 < x < l ,  there will be no 
greatest and no least values among them. Indeed, there is no least

* These theorems are proved in G. M. Fikhtengolts* Principles of Mathema-
tical Analysis, Vol. 1, Fizmatgiz, 1968 (in Russian),
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58 Ch. 2. Limit. Continuity of a Function

value or greatest value of x in the interval. (There is no extreme 
left point, since no matter what point x* we take there will be
a point to the left of it, for instance, the point y  ; likewise,

M

Fig. 52

there is no extreme right point; 
consequently, there is no least 
and no greatest value of the fun-
ction y =  x.)

Theorem 2. Let the function 
y = f(x) be continuous on the inter-
val [a, b] and at the end points of 
this interval let it take on values of 
different signs; then between the 
points a and b there will be at

least one point x = c, at which the function becomes zéro:
f(c) =  0, a < c < b

This theorem has a simple geometrical meaning. The graph of a 
continuous function y = f(x) joining the points Afx [a, f(a)] and 
Mt [b, f  (6)], where /  (a) <  0 and f ( b) > 0 
or f  (a) >  0 and f  (b) <  0, cuts the x-axis 
in at least one point (Fig. 53).

Fig. 54

I

Example. Qiven the function y =  **— 2; yx=i =  — l, yx=a =  6. It is conti-
nuous in the interval [1, 2], Hence, in this interval there is a point where 
y =  x3— 2 becomes zéro. Indeed, y =  0 when x =  ^/~2 (Fig. 54).

Theorem 3. Let a function y = f(x) be defined and continuous in 
the interval [a, b]. If  at the end points of this interval the function 
takes on unequal values f(a) = A, f(b) = B, then no matter what the 
number p between numbers A and B, there will be a point x = c 
between a and b such that f  (c) =  p.
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2.11 Comparing Infinitésimal s 59

The meaning of this theorem is clearly illustrated in Fig. 55. 
In the given case, any straight line y = p cuts the graph of the 
function y = f(x). •

Note. It will be noted that Theorem 2 is a particular case of 
this theorem, for if A and B hâve different signs, then for p one 
can take 0, and then p =  0 will lie between the numbers A and B.

Corollary of Theorem 3. If  a function y = f(x) is continuous in some 
interval and takes on a greatest value and a teast value, then in this 
interval it takes on, at least once, any value lying between the gre-
atest and least values.

Indeed, let f (x1) = M, f(x2) = m. Consider the interval [xlt x2]. 
By Theorem 3, in this interval the function y = f(x) takes on any 
value p lying between M and m. But the interval [xlt xt] lies 
inside the interval under considération in which the function f(x) 
is defined (Fig. 56).

2.11 COMPARING INF1NITESIMALS

Let several infinitésimal quantities
a, P, y, . . .

be at the same time functions of one and the same argument x 
and let them approach zéro as x approaches some limit a or in- 
finity. We shall describe the approach of these variables to zéro 
when we consider their ratios.*

We shall, in future, make use of the following définitions,
Définition 1. If the ratio — has a finite nonzero limit, thata  ’

o  e t  1

is, if lim-^- =  A =^0 , and therefore, lim-p- =  ^-^=0 , the infinites- 
imals P and a are called infinitesimals of the same order.

* We assume that the infinitésimal in the denominator does not vanish in 
some neighbourhood of the point a.
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60 Ch. 2. Limit. Continuity of a Function

Example 1. Let a  =  x> p =  sin2x, where x -► 0. The infinitesimals a  and p 
are of the same order because

lim — =  lim 
x-o  « x-*o

sin 2x 
x

Example 2 . When x -+ 0 ,  the infinitésimale x, sin 3*, tan 2x, 7 In ( 1 +  x) are 
infinitesimals of the same order. The proof is similar to that given in Example 1.

Définition 2. If the ratio of two infinitesimals approaches

zéro, that is, if lim-j^ =  0  ^and lim^- =  o o ) ,  then the infinitési-
mal P is called an infinitésimal of higher order than a, and the 
infinitésimal a is called an infinitésimal of lower order than p.

Example 3. Let a  =  x, fi =  xn, n > 1, jc-^0. The infinitésimal fi is an infi-
nitésimal of higher order than the infinitésimal a  since

xn
lim — =  lim xn~ l =  0
x-»0 x x-fO

Here, the infinitésimal a  is an infinitésimal of lower order than fi.

Définition 3. An infinitésimal P is called an infinitésimaltof the 
kth order relative to an infinitésimal a, if p and a* are infinitesimals
of the same order, that is, if l im ^  =  A ^ O .

Example 4. If a =  x, P =  x3, then as *->-0 the infinitésimal P is an infinité-
simal of the third order relative to the infinitésimal a , since

lim 4 == lim ^ = 1  
jc-,0 « *-o x-’

Définition 4. If the ratio of two infinitesimals approaches

unity, that is, if l im |^ = l , the infinitesimals P and a  are called
équivalent infinitesimals and we write a  ~  p.

Example 5. Let a  =  x and p =  sinx, where x -► 0. The infinitesimals a  and 
P are équivalent, since

v sin x . 
l im -------= 1
x-* 0 x

Example 6 . Let a  =  *, p =  ln (1 + * ), where x -► 0. The infinitesimals a  and 
P are équivalent, since

lim ln ( ' + * > = ,

(see Example 6 , Sec. 2.9).

Theorem 1. I f  a  and p are équivalent infinitesimals, their différ-
ence a —p is an infinitésimal of higher order than a  and than p.
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Proof. Indeed,

Um =  lim ( ! _ I )  =  ! -H ç , 1  =  j _  j =  °

Theorem 2. I f  the différence of two infinitesimals a —p is an 
infinitésimal of higher order than a and thon P, then a and P are 
équivalent infinitesimals.

Proof. Let lima ~ ^ =  0, then lim ( 1 ——) = 0 , or 1—lim — =  0,
CL V CL J  CL

or 1 = lim  —, i.e., a ~ p .  If l im ^ Ê  =  0, then — 1^= 0 ,

lim |~ =  1, that is, a ~ p .

Example 7. Let a =  x, p =  * + * * , where x —►O.
The infinitesimals oc and P are équivalent, since their différence P —a =  x* 

is an infinitésimal of higher order than oc and than p. Indeed,

lim ^~~a =  lim — =  lim x2 =  0 
x-+Q a  x-»-0 x  x-+Q

lim
x-+0

>—oc
=  üm

P *+**
lim
x-+0

x2
\ + x 2

x 4 - 1 1
Example 8 . For x —► oo the infinitesimals a  =  and p = — are équivalent

infinitesimals, since their différence oc— p = ld z J .— - =  — is an infinitésimal
K x2 x x 2

of higher order than a and than p. The limit of the ratio of oc and P is unity:

x ± l

lim - -̂== lim — — lim lim (  1+ — ) = 1
JC—► CO p  X -*  00 JC-+0D X  x - f  00 \  X J

X

Note. If the ratio of two infinitesimals — has no limit and does
0C

not approach infinity, then p and a  are not comparable in the 
above sense.

E x a m p le  9. Let a=x, p =  xsin-^-, where x —>-0. The infinitesimals a and
O |

P cannot be compared because their ratio — =s=sin^ as x —►O does not ap-
OC X v

proach either a finite limit or infinity (see Example 4, Sec. 2.3).

Exercises on Chapter 2

Find the indicated limits:

1. • Ans• 4- 2. 11m [2sin x — c o sx + c o tx ). Artt. 2 .
jc-*1 x  ~ r * n
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