Lecture 5

A FUNCTION THAT APPROACHES INFINITY.
BOUNDED FUNCTIONS

We have considered cases when a function f(x) approaches a
certain limit b as x—a or as x— 0. |

Let us now take the case where the function y=f(x) approaches
infinity when the argument varies in some way.

Definition 1. The function f(x) approaches infinity as x—a,
i.e., it is an infinitely large quantity as x—a if for each
positive number M, no matter how large, it is possible to find
a 6 > 0 such that for all values of x different from a and satisfying
the condition |x—a| < 6§, we have the inequality |f(x)]| > M.

If f(x) approaches infinity as x—a, we write

lim f (x) = o0

or f(x) =00 as x—a.

If f(x) approaches infinity as x—a and, in the process, assumes
only positive or only negative values, the appropriate notation is
lim f(x) =+ o0 or lim f(x)=— oo.

X -0 X—->a

Example 1. We shall prove that lim '('l_:lx_)’=+°°' Indeed, for any M > 0

x -1

we have

1
T—p >M
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provided
[1—x]< —l—=6

VM

assumes only positive values (Fig. 34).

(l—x)2<Mi,

The function (l——x)2

Example 2. We shall prove that lim (—%):oo. Indeed, for any

x-0

M > 0 we have
,_]_I >M
X

provided

] =1x—0] < ~=8

\
Here (—%)>0 for x < 0 and (—%)<0 for x>0 (Fig. 35).
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If the function f(x) approaches infinity as x— co, we write

X+ ®
and we may have the particular cases

lim f(x)=o00, lim f(x)=o00, lim f(x)=—o00

For example,

lim x*= 4 o0, lim x*=—o00 and the like.

X -+ ® X+ ~-®

Note 1. The function y=f(x) may not approach a finite limit
or infinity as x—a or as x— oo.
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Example 3. The function y=—sin x defined on the infinite interval — o0 <
< x <+, does not approach either a finite limit or infinity as x — 4 o0
(Fig. 36).

y y=sinx
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Fig. 36

Example 4. The function y=sin% defined for all values of x, except

x=0, does not approach either a finite limit or infinity as x — 0. The graph
of this function is shown in Fig. 37.

9\ f

y=5£n o

Definition 2. A function y=f(x) is called bcunded in a given
range of the argument x if there exists a positive number M such
that for all values of x in the range under consideration the
inequality |f(x)|<<M is fulfilled. If there is no such number M,
the function f(x) is called unbounded in the given range.

Example 5. The function y=sin x, defined in the infinite interval — o <
< X < + o, is bounded, since for all values of x
|sinx|<1=M

Definition 3. The function f(x) is called bounded as x —a if
there exists a neighbourhood, with centre at the point a, in which
the given function is bounded.

Definition 4. The function y={(x) is called bounded as x — oo
if there exists a number N > 0 such that for all values of x
satisfying the inequality |x| > N, the function f(x) is bounded.

The boundedness of a function approaching a limit is decided
by the following theorem.

Theorem 1. /f limf(x)=0b, where b is a finite number, the

function f(x) is bo;r;d‘:’d as x—a.
Proof. From the equation lim f(x)=05 it follows that for any

e > 0 there will be a § such xt—l;;t in the neighbourhood a—6 <
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< x<a-+38 the inequality
[F)—bl<e
or

[F)<|b|+e

is fulfilled, which means that the function f(x) is bounded as
x—a.
Note 2. From the definition of a bounded function f(x) it fol-

lows that if

lim f(x)=00 or lim f(x)=o00

X -4 X+ @
that is, if f(x) is an infinitely large function, it is unbounded.
The converse is not true: an unbounded function may not be
infinitely large.

Fig. 38

For example, the function y=xsinx as x— oo is unbounded
because, for any M >0, values of x can be found such that
|xsinx| > M. But the function y=xsinx is not infinitely large
because it becomes zero when x=0, n, 2xn, ... . The graph of the
function y=xsinx is shown in Fig. 38.

Theorem 2. If limf(x)=b540, then the function y=;—:7) i a
bounded function as x—a. |

Proof. From the statement of the theorem it follows that for an
arbitrary € >0 in a certain neighbourhood of the point x=a we
will have |f(x)—b|<e, or ||f(x)|—|b||<e, or —e<|f(x)]|—
—|b|<e, or |b|—e<|f(x)|<|b|+e.

From the latter inequality it follows that

1 1 1
[oT=¢ = [T ~ [6]¥e
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For example, taking s:i%|b|, we get

10 1 0
16T ~ IF @] ~ 111 0]

which means that the function ﬁ is bounded.

2.4 INFINITESIMALS AND THEIR BASIC PROPERTIES

In this section we shall consider functions approaching zero as
the argument varies in a certain manner.
Definition. The function @ =a (x) is called infinitesimal as x —a
or as x—oo if lim a(x)=0 or lima(x)=0.
X—-a : X—=> ®
From the definition of a limit it follows that if, for example,

lim & (x) =0, this means that for any preassigned arbitrarily small
X —=a

positive e there will be a 6 >0 such that for all x satisfying
the condition |x—a| < 8, the condition |a (x) | < e will be satisfied.

g
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Fig. 39 Fig. 40

Example 1. The function a=(x—1)2 is an infinitesimal as x — 1 because
lim o= lim (x—1)2=0 (Fig. 39).
x -1 x-1 I

Example 2. The function a=— is an infinitesimal as x — oo (Fig. 40)
(see Example 3, Sec. 2.2).

Let us establish a relationship that will be important later on.

Theorem 1. [f the function y={f(x) is in the form of a sum of
a constant b and an infinitesimal o.: ‘

y=b+a (N

limy=>b (as x—a or x— o0)

then

Conversely, if limy=>5, we may write y—=b-+a, where o is an
infinitesimal.

Proof. From (1) it follows that |y—b|=]|a|. But for an arbit-
rary e, all values of a, from a certain value onwards, satisfy the


podkl
Прямоугольник


relationship |a| < e; consequently, the inequality |y—b| < e will
be fulfilled for all values of y from a certain value onwards. And
this means that limy=25.

Conversely: if limy=»5, then, given an arbitrary e, for all
values of y from a certain value onwards, we will have |y—b| < e.
But if we denote y—b=a, then it follows that for all values
of a, from a certain one onwards, we

Y1 will have |a|<e; and this means
that o is an infinitesimal.
Example 3. We have the function (Fig. 41)
1
[ Then
lim y=1
X+ ®
0 .
and, conversely, since

Fig. 41 lim y—1

X -+ ®

the variable y may be represented in the form of a sum of the limit 1 and an

infinitesimal e, which in this case is %; that is,

y=14a

Theorem 2. If a=a(x) approaches zero as x —a (or as x — oo)
and does not become zero, then y =% approaches infinity.

Proof. For any M >0, no matter how large, the inequality
T'olz_> M will be fulfilled provided the inequality |a|<7wl— is ful-

filled. The latter inequality will be fulfilled for all values of a,
from a certain one onwards, since a (x) — 0.

Theorem 3. The algebraic sum of two, three or, in general, a
definite number of infinitesimals is an infinitesimal function.

Proof. We shall prove the theorem for two terms, since the
proof is similar for any number of terms.

Let u(x) =a(x)+p (x), where lima(x)=0, limp(x)=0. We

X —+a x
shall prove that for any & > 0, no matter how sn‘;all, there will

be a 6§ >0 such that when the inequality |x—a| < § is satisfied,
the inequality |u| <e will be fulfilled. Since a (x) is an infinites-
imal, a 8§, will be found such that in a neighbourhood with centre at
the point a and radius 6, we will have

e

le()| <5
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Since B (x) is an infinitesimal, there will be a §, such that in a
neighbourhood with centre at the point @ and radius 6, we will

have|ﬁ(x)|<%. ’
Let us take § equal to the smaller of the two quantities §, and §,;
then the inequalities |a| <—;— and |B] <—°2- will be fulfilled in

a neighbourhood of the point a of radius 6. Hence, in this neigh-
bourhood we will have

ul=la@+B@I<|a@|+Ip@)| <g+g=¢
and so |u| <e, as required.
The proof is similar for the case when
lima(x)=0, lim p(x}=0

X —> @ X - ®

Note. Later on we will have to consider sums of infinitesimals
such that the number of terms increases with a decrease in each
term. In this case, the theorem may not hold. To take an example,

cansider u=%—|—%+ -)—l— where x takes on only positive

N

x terms
integral values (x=1, 2,3, ..., n, ...). It is obvious that as x — oo

each term is an infinitesimal, but the sum u=1 is not an
infinitesimal.

Theorem 4. The product of the function of an infinitesimal a = a (x)
by a bounded function z=2(x), as x—a (or x— o0) is an infini-
tesimal quantity (function).

Proof. Let us prove the theorem for the case x—a. For a cer-
tain M > 0 there will be a neighbourhood of the point x=a in
which the inequality !z| <M will be satisfied. For any e >0

there will be a neighbourhood in which the inequality || <%

will be fulfilled. The following inequality will be fulfilled in the
least of these two neighbourhoods:

|az| < -;TM=3

which means that az is an infinitesimal. The proof is similar for

the case x— oo. Two corollaries follow from this theorem.
Corollary 1. /f lima =0, limB =0, then limaf =0 because f (x)

is a bounded quantity. This holds for any finite number of factors.
Corollary 2. /f lima =0 and c¢=const, then limca =0.

a (x)

Theorem 5. The gquotient 1T obtained by dividing the infinitesi-

mal o (x) by a function whose limit differs from zero is an infini-
tesimal,
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Proof. Let lima (x) =0, limz (x) =bs40. By Theorem 2, Sec. 2.3,

it follows that % is a bounded quantity. For this reason, the
@ (x)

m=a(x)% is a product of an infinitesimal by a boun-
ded quantity, that is, an infinitesimal.

fraction

2.5 BASIC THEOREMS ON LIMITS

In this section, as in the preceding one, we shall consider sets
of functions that depend on the same argument x, where x—a
or x — 00,

We shall carry out the proof for one of these cases, since the
other is proved analogously. Sometimes we will not even write
Xx—a or x— oo, but will take one or the other of them for granted.

Theorem 1. The limit of an algebraic sum of two, three or, in
general, any definite number of variables is equal to the algebraic
sum of the limits of these variables:

lim(u,+uy,+ ... +u)=limu, +limu,+ ... +limu,

Proof. We shall carry out the proof for two terms since it is
the same for any number of terms. Let limu, =a,, limu, =a,.
Then on the basis of Theorem 1, Sec. 2.4, we can write

Uy=a,+o,, u,=a,+a,,
where o, and «, are infinitesimals. Consequently,
U, +u, =(a,+a,)+ (al + )

Since (a,+a,) is a constant and (a,4a,) is an infinitesimal,
again by Theorem 1, Sec. 2.4, we conclude that

lim (¢, +u,) =a,+a, =limu, 4 limu,

Example 1.

. 2 1 2% 2 . 2 2

lim * + = lim Z )= lim lim = lim = — p—
X—+> ® X x»co(l—l—x) x—»wl+,x->a>x=l+x->mx l+0 1

Theorem 2. The limit of a product of two, three or, in general,
any definite number of variables is equal to the product of the limits
of these variables:

limu,-u,-... up=Ilimu,-limuy,-...-limy,
Proof. To save space we carry out the proof for two factors.
Let limu, =a,, limu, =a,. Therefore,
u1=a1 '+_a1, u2=a2+a2,
Wy, = (a,+a,) (@, -} o,) =a,a, 4 a,0, +a,a, +a,a,
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The product a,a, is a constant. By the theorems of Sec. 2.4, the
quantity a,a,-a,a, 4,0, is an infinitesimal. Hence, limu,u, =
= a,a, = limu,-limu,. *
Corollary. A constant factor may be taken outside the limit sign.
Indeed, if limu, =a,, c is a constant and, consequently, limc=c,
then lim(cu,) =limc-limu, =c-limu,, as required.
Example 2,
lim 5x3=5 lim x3=5.8=40
x> 2 x-+2
Theorem 3. The limit of a quotient of two variables is equal to
the quotient of the limits of these variables if the limit of the de-
nominator is not zero:
limu
limo

lim = = if limv =<0

Proof. Let limu=a, limv=b%0. Then u=a+a, v=>0-+§,
where o and P are infinitesimals.
We write the identities

=a+a=_g_+(¢_zﬁ__a_>=%+ab—ﬁa

el:

or

The fraction -:— is a constant number, while the fraction Z‘:’T:_%i;
is an infinitesimal variable by virtue of Theorems 4 and 5 (Sec.

2.4), since ab—fBa is an infinitesimal, while the denominator
a limu

b(b+P) has the limit 5*=£0. Thus, lim— =4 =7—.

Example 3.
lim (3x+5) 31i 5
o 345 e X ) 3Mm et _31+45_8
ol ax—2= lim(4x—2)" 4¥m x—2"%1-2" 2
X = X =

Here, we made use of the already proved theorem for the limit of a fraction
because the limit of the denominator differs from zero as x — 1. If the limit of
the denominator is zero, the theorem for the limit of a fraction is not appli-
cable, and special considerations have to be invoked.

Example 4. Find lim *—4
x> 2 X—2
Here the denominator and numerator approach zero as x —2, and, consequ-
ently, Theorem 3 is inapplicable. Perform the following identical transformation: -

¥—4 (x—2)(x42)__

x—2 x—2 =x+2
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The transformation holds for all values of x different from 2. And so, having
in view the definition of a limit, we can write

oo x2—4 . (x—2)(x42) . _
AR e g m =4

X . As x -1 the denominator approaches zero but

Exami:le 5. Find lim .
xX—=+1 x_l

the numerator does not (it approaches unity). Thus, the limit of the reciprocal
is zero:
lim (x—1)

, —1 0

lim ol =x-':l —_———

x-+1 X lim x 1 0
X=1

Whence, by Theorem 2 of the preceding section, we have

lim X =00
x-le_l

Theorem 4. If the inequalities u<Cz<Cv are fulfilled between the
corresponding values of three functions u=u(x), z=2z(x) andv=
= v (x), where u(x) and v (x) approach one and the same limit b as
Xx—a (or as x— o0), then z2=2z(x) approaches the same limit as
Xx—a (or as x — o0).

Proof. For definiteness we shall consider variations of the func-
ctions as x—a. From the inequalities u <{z<Cv follow the ine-
qualities

u—b<z—b<v—b
it is given that

limu=»b, limv=>b

X —=a xX—+a
Consequently, for e >0 there will be a certain neighbourhood,
with centre at the point a, in which the inequality |u—b|<e
will be fulfilled; likewise, there will be a certain neighbourhood
with centre at the point @ in which the inequality |v—b|<e
will be fulfilled. The following inequalities will be fulfilled in the
smaller of these neighbourhoods:

—e<u—b<e and —e<v—b<e

and thus the inequalities

—e<z—-b<e¢
will be fulfilled; that is,
limz=b

Theorem 5. If as x—a (or as x— o) the function y takes on
nonnegative values y—>=0 and, at the same time, approaches the
limit b, then b is a nonnegative number b= 0.
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Proof. Assume that b <0, then |y—b|>|b]; that is, the diffe-
rence modulus |y—b| is greater than the positive number |b| and,
hence, does not approach zero as x—a. But then y does not
approach b as x— a; this contradicts the statement of the theorem.
Thus, the assumption that 6 < 0 leads to a contradiction. Conse-
quently, 6 >0.

In similar fashion we can prove that if y<C0 then limy<CO0.

Theorem 6. If the inequality v—=u holds between corresponding
values of two functions u=u(x) and v=v(x)
which approach limits as x —a (or as x — o),
then limov > limu.

Proof. It is given that v—u =>0. Hence, A
by Theorem 5, lim(v—u)>=0 or limv—
~—limu >0, and so limv>limu. 1

Example 6. Prove that lim sin x=0.

-0
From Fig. 42 it follows that if 0A=1, x>0, —

then AC=sinx, AB=x, sinx < x. Obviously, when
x < 0 we will have |sinx| < |x|. By Theorems 5 and Fig. 42
6, it follows, from these inequalities, that lim sin x = ®

X =0
=0.

Example 7. Prove that lim sin ==0.
X -0 2

sin X
2

Example 8. Prove that lim cos x=1; note that
X-+0

Indeed,

< | sin x|. Consequently, lim sin ‘i=0.
X =0 2

. o X
cosx=1-—-2 sm”?

therefore,

lim cos x= lim (1—2 sin*%):l ~21im sin? %~=1—0=1.
X=+0 xX—-+0 X+ 0 2

In some investigations concerning the limits of variables, one
has to solve two independent problems:

(1) to prove that the limit of the variable exists and to establish
the boundaries within which the limit under consideration exists:

(2) to calculate the limit to the necessary degree of accuracy.

The first problem is sometimes solved by means of the following
theorem which will be important later on.

Theorem 7. /f a variable v is an increasing variable, that is, each
subsequent value is greater than the preceding one, and if it is
bounded, that is, v << M, then this variable has the limit limv=a,
where a << M.

A similar assertion may be made with respect to a decreasing
bounded variable quantity.
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We do not give the proof of this theorem here since it is based
on the theory of real numbers, which we do not consider in this
lext. *

In the following two sections we shall derive the limits of two
functions that find wide application in mathematics.

sin x

2.6 THE LIMIT OF THE FUNCTION AS x—0

The function sme is not defined for x=0 since the numerator

and denominator of the fraction become zero. Let us find the
limit of this function as x— 0. We consider
a circle of radius 1 (Fig. 43); denote the cent-

¢ ral angle MOB by x (0 <x< —’;—) From Fig.

Y 43 it follows that
! area of A\ MOA < area of sector
- MOA < area of A COA. (1)
0 84 The area of A MOA=0A-MB=
Fig. 43 . .
_7-1-smx =3 sinx.
The area of sector MOA=%OA-A'M=%-1-x=%x.

The area of ACOA=-50A-AC =+.1-tanx=— tanx.

After cancelling %, inequalities (1) can be rewritten as

sinx < x <tanx

Divide all terms by sinux:

1<

X 1

<

sin x cos X

or

1> il—?cf- > cosx
We derived this inequality on the assumption thatx> 0; noting
that s'?_(_:)x)=s':x and cos(—x) =cosx, we conclude that it holds

for x < 0 as well. But limcosx=1, liml=1.
X0 X—+0

* The proof of this theorem is given in G. M. Fikhtengolts’ Principles of
Mathematical Analysis, Vol. 1, Fizmatgiz, 1960 (in Russian).
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sin x

Hence, the variable ~ lies between two quantities that have
the same limit (unity). Thus by Theor¢gm 4 of the preceding
section,

lim 3% _ |

X0

The graph of the function y=sinTx is shown in Fig. 44.

[}
M inx
y'j.z‘_
/\*
Fig. 44
Examples.
P T R S e L S TR S T
x»0 X xs0 X COSX y,9 X x,oCOSX 1
. sinkx . sin kx . sin (kx)
2. lim =lim & =k{im ————=%k.-1=%k (k=const).
x+0 X xX-+0 kx X=0 (kx) ( S)
(kx> 0)
1 2sin2‘i sin =~
3. lim ——%* _lim——= =1im sin =~ —1.0=0.
x-0 x x>0 X x+0 X 2
2
sin ax lim sin ax
4. lim S0O% _jjm &, _O¥ G xo0 @X o 1 _a
" xaoSinPx 4,0 P sinfx Blim sinfx B 1 B
ﬂx X=+0 Bx

(@ =const, P =const).
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