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“/(ai) approaches b as x —*--)-oo” and
“/( x) approaches b as x —»■—oo” or, in symbols,

lim f(x) = b,
X  -+ +  00

lim / (ai) =  b
X-* - «

2.3. A FUNCTION THAT APPROACHES INFINITY.
BOUNDED FUNCTIONS

We hâve considered cases when a function f(x) approaches a 
certain limit b as x —*-a or as a i—►oo.

Let us now take the case where the function y = f(x) approaches 
infinity when the argument varies in some way.

Définition 1. The function f(x) approaches infinity as a i—*-a,
i.e., it is an in/initely large quantity as a i—*a if for each 
positive number M, no matter how large, it is possible to find 
n 6 >  0  such that for ail values of x different from a and satisfying 
the condition |jc—a |< ô ,  we hâve the inequality \ f ( x ) \ > M.

If /(ai) approaches infinity as ai—*a, we Write

lim /  (ai) =  oo
x -*■ a

or f (x )  -*■ oo as ai—*a.
If / ( ai) approaches infinity as a i—►a and, in the process, assumes 

only positive or only négative values, the appropriate notation is 
lim / (ai) =  +  oo or lim / (ai) =  — oo.

x ■* a x ~+ a

Example 1. We shall prove that lim 7 7 — -^  =  + oo. Indeed, for any M >  0
x  -► 1 U  — x r

1 > M

wc hâve

podkl
Прямоугольник

podkl
Прямоугольник

podkl
Машинописный текст
Lecture 5



36 Ch. 2. Limit. Continuity of a Function

provided

The function ■  ̂ 1 2  assumes only positive values (Fig. 34).

Example 2 . We shall prove that lim ^ ^  =  oo.

M > 0  we hâve

provided

1*1 = 1 *—0 | <

Here *or x < 0  anc*

Indeed, for any

— J < 0 for * > 0 (Fig. 35).

If the function f(x) approaches infinity as x —► oo, we wrlte

lim f  (x) — oo
X  -*■ 00

and we may hâve the particular cases

lim f(x) = oo, lim f(x) =  oo, lim f(x) =  — oo
a: -► + oo a: -*• -  oo *  -*■ + oo

For example,

lim =  +  oo, üm x3 = — oo and the like.
X -*■ 00 X - *  -  00

Note 1. The function y = f(x) may not approach a finite limit 
or infinity as x —*a or as x —►oo.
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2.3 A Function That Approaches Infinity 37

Example 3. The function y =  sin x  defined on the infinité interval — oo <  
< x <  +  co, does not approach either a finite limit or infinity as x —*- +  oo 
(Fig. 36).

yit y=sLnx

0

Fig. 36

Example 4. The function y =  sin-i- defined for ail values of x, except

x =  0 , does not approach either a finite limit or infinity as x —1- 0 . The graph 
of this function is shown in Fig. 37.

Définition 2 . A function y = f(x) is called bounded in a given 
range of the argument x if there exists a positive number M such 
that for ail values of x in the range under considération the 
inequality | / (*) | <; M is fulfilled. If there is no such number M, 
the function f (x ) is called unbounded in the given range.

Example 5. The function j/ =  sinx, defined in the infinité interval — oo < 
< x <  + o o , is bounded, since for ail values of x

| sin x | <  1 =  M

Définition 3. The function f  (x) is called bounded as x —*a if 
there exists a neighbourhood, with centre at the point a, in which 
the given function is bounded.

Définition 4. The function y = f(x) is called bounded as x —»-oo 
if there exists a number N >  0 such that for ail values of x 
satisfying the inequality |x |> A f, the function f(x) is bounded.

The boundedness of a function approaching a limit is decided 
by the following theorem.

Theorem 1. I f  lim / (x) =  b, where b is a finite number, the
x -*■ a

function f(x) is bounded as x —>-a.
Proof. From the équation lim f(x) = b it follows that for any

x a
e > 0  there will be a 6 such that in the neighbourhood a— Ô<
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38 Ch. 2. Lirait. Continua y of a Function

< X <  a +  ô the inequality

\ f ( x ) ~ b \ <  e
or

I /  (x) I <  I b | +  e
is fulfilled, which means that the function /(x) is bounded as 
x —► a.

Note 2 . From the définition of a bounded function /(x) it fol- 
lows that if

lim f  (x) = oo or lim / (x) =  oo
x -+a x  -*■ od

that is, if /(x) is an infinitely large function, it is unbounded- 
The converse is not true: an unbounded function may not be 
infinitely large.

For example, the function y = x sinx as x —>-oo is unbounded 
because, for any M >  0, values of x can be found such that 
|x s in x |> A f . But the function # =  xsinx is not infinitely large 
because it becomes zéro when x =  0, n ,  2 n, . . . .  The graph of the 
function i/ =  xsinx is shown in Fig. 38.

Theorem 2. If  lim/(x) =  6=^0, then the function y = rr \ o,
x  -* a i \x )

bounded function as x —>-a.
Proof. From the statement of the theorem it follows that for an 

arbitrary e >  0  in a certain neighbourhood of the point x = a we 
will hâve | /  (x)—b \ <  e, or | / ( x ) | —16|| <  e, or —e < |/ ( x ) |  — 
— |b |< e ,  or \b\ — e < |/ ( x )  < |h |  +  e.

From the latier inequality it follows that
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2.4 Infinitesimals and Their Basic Properties 39

For example, taking e =  ̂ |ô | ,  we get

_I2_ > _J_> _L2_
9 I b I ^ l /W I  ^  11|*|

which means that the function -f t -t  is bounded.

2.4 INFINITESIMALS AND THEIR BASIC PROPERTIES

In this section we shall consider functions approaching zéro as 
the argument varies in a certain manner.

Définition. The function a  =  a(x) is called infinitésimal as x —►a 
or as x —>-oo if lim a(x) =  0 or lim a(x) =  0 .

x  -+ a x  -► oo

From the définition of a limit it follows that if, for example, 
lim a(x) =  0 , this means that for any preassigned arbitrarily small

x -* a

positive e there will be a ô >  0  such that for ail x satisfying 
the condition | x — a | <  ô, the condition | a  (x) | <  e will be satisfied.

Example 1. The function a =  (x— l ) 2  is an infinitésimal as x —*-l because 
lim a =  lim (x— 1 ) 2  =  0 (Fig. 39).

X -> 1 X  1

Example 2 . The function a  =  — is an infinitésimal as x —► oo (Fig. 40) 

(see Example 3, Sec. 2.2).

Let us establish a relationship that will be important later on. 
Theorem 1. I f  the function y = f(x) is in the form of a sum of 

a constant b and an infinitésimal a:
y = b +  cc (1)

then
lim y —b (as x —̂ a  or x —<• oo)

Conversely, if limy = b, we may write y  = b-\-a, where a  is an 
infinitésimal.

Proof. From (1) it follows that |y —6 | =  |a | .  But for an arbit- 
rary e, ail values of a, from a certain value onwards, satisfy the
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40 Ch. 2. Limit. Continuity of a Function

relationship | a |< e ;  consequently, the inequality |y —b | < e  will 
be fulfilled for ail values of y from a certain value onwards. And 
this means that Y\my — b.

Conversely: if Y\my = b, then, given an arbitrary e, for ail 
values of y  from a certain value onwards, we will hâve |y —b |< e .  
But if we dénoté y — b = a, then it follows that for ail values

of a , from a certain one onwards, we 
will hâve | a | <  e; and this means 
that a  is an infinitésimal.

Example 3. We hâve the function (Fig. 41) 

1

Then

y= i+ -

lim y — 1

and, conversely, since

lim y =  1

the variable y may be represented in the form of a sum of the limit 1 and an 

infinitésimal a, which in this case is ; that is,

y = l + a

Theorem 2. I f a = a(x) approaches zéro as x->-a (or as x —► oo) 
and does not become zéro, then H =r ~  approaches infinity.

Proof. For any M >  0, no matter how large, the inequality 
y^y >  Af will be fulfilled provided the inequality | a |<ÿ^- is ful-
filled. The latter inequality will be fulfilled for ail values of a, 
from a certain one onwards, since a (x )—*0.

Theorem 3. The algebraic sum of two, three or, in general, a 
definite number of infinitesimals is an infinitésimal function.

Proof. We shall prove the theorem for two terms, since the 
proof is similar for any number of terms.

Let u(.x:)=a(x) +  p(x), where lima(x) =  0, limP(x) =  0. We
x a. x -*■ a

shall prove that for any e >  0 , no matter how small, there will 
be a 6 > 0  such that when the inequality |x —a | < 6  is satisfied, 
the inequality | « | <  e will be fulfilled. Since a(x) is an infinités-
imal, a ô, will be found such that in a neighbourhood with centre at 
the point a and radius àx we will hâve

|a (* )| < y
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2.4 Infinitésimal s and Their Basic Properties 41

Since P(x) is an infinitésimal, there will be a ô2 such that in a 
neighbourhood with centre at the point a and radius ô2 we will
hâve | p (x) | <  - j .

Let us take 6 equal to the smaller o! the two quantities 6X and ô2;
then the inequalities | a | <  ^  and |P |< - |-  will be fulfilled in
a neighbourhood of the point a of radius ô. Hence, in this neigh-
bourhood we will hâve

I « I =  I a  (*) +  P (*) | <  I a  (*) 1 + 1 P (*) I <  - j  +  y  =  e
and so | u | <  e, as required.

The proof is similar for the case when
lim a(x) =  0 , lim P(x) =  0

X - *  ÛD X  -► CD

Note. Later on we will hâve to consider sums of infinitesimals 
such that the number of terms increases with a decrease in each 
term. In this case, the theorem may not hold. To take an example,

consider « =  -̂ - +  “ + •••+-£- where x takes on only positive

x  te rm s

intégral values (x=  1, 2, 3, . . . ,  n, . . . ) .  It is obvious that as x —► oo 
each term is an infinitésimal, but the sum u = l  is not an 
infinitésimal.

Theorem 4. The product of the function of an infinitésimal a  =  a (x) 
b y a bounded function z — z( x), as x —*a (or x —*-<») is an infini-
tésimal quantity (function).

Proof. Let us prove the theorem for the case x —*a. For a cer-
tain M >  0  there will be a neighbourhood of the point x = a in 
which the inequality |z |< A f  will be satisfied. For any e > 0
there will be a neighbourhood in which the inequality | a l< -^ j
will be fulfilled. The following inequality will be fulfilled in the 
least of these two neighbourhoods:

\a z \ <  I T M = b

which means that az is an infinitésimal. The proof is similar for 
the case x —>-oo. Two corollaries follow from this theorem.

Corollary 1. If  lima =  0, lim (5 =  0, then limap =  0 because P (x) 
is a bounded quantity. This holds for any finite number of factors. 

Corollary 2 . I f  lima =  0 and c =  const, then limca =  0.
Theorem 5. The quotient ~ y  obtained by dividing the infinitesi-2 (X)

mal a(x) by a function whose limit differs from zéro is an infini-
tésimal,
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42 Ch. 2. Limit. Continuity of a Function

Proof. Let lima(x) =  0, limz(x) = b=^0.  By Theorem 2, Sec. 2.3, 
it follows that is a bounded quantity. For this reason, the

fraction =  a (x)  ̂ is a product of an infinitésimal by a boun-
ded quantity, that is, an infinitésimal.

2.5 BASIC THEOREMS ON LIM1TS

ln this section, as in the preceding one, we shall consider sets 
of functions that dépend on the same argument x , where x —<- a 
or x —*■ oo.

We shall carry out the proof for one of these cases, since the 
other is proved analogously. Sometimes we will not even write 
x —*a or x —► oo, but will take one or the other of them for granted.

Theorem I. The limit of an algebraic sum of two, three or, in 
general, any de fini te riumber of variables is equal to the algebraic 
sum of the limit s of these variables:

lim («,-)- u2 uk) = lim ux +  lim «2 +  . . .  +  lim uk

Proof. We shall carry out the proof for two terms since it is 
the same for any number of terms. Let limMx =  ax, lim«2= a 2. 
Then on the basis of Theorem 1, Sec. 2.4, we can write

«i =  ûi +  ai, u2 =  a2 +  a 2,

where a x and a 2 are infinitesimals. Consequently,

«i +  «2 =  fai +  a2) +  fai +  “ 2)

Since (aj +  a2) is a constant and (aj-f-a2) is an infinitésimal, 
again by Theorem 1, Sec. 2.4, we conclude that

lim (ux +  u2) =  a, +  û2 =  lim ux +  lim u2
Example 1.

lim Ï Ü ^ f =  lim (  14.—^ =  lim i - f  lim —
X-*- CD X* x  -*■ CC \  X J  X CD x  -P- CD X

1-f lim L —1+0=1
X  -*• CD X

Theorem 2. The limit of a product of two, three or, in general, 
any definite number of variables is equal to the product of the limits 
of these variables:

limur u2- . . .  •uk =  \ m u l \imu2‘ . . .  -limu*

Proof. To save space we carry out the proof for two factors. 
Let lim u ^ O j, limu2= a 2. Therefore,

iii =  a,-F(Xi, «2 =  a2 +  a 2,
M,m2 =  faj +  a t) (at -(- a 2) =  a}az +  ata2 +  a2a x +  a xa 2
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2.5 Basic Theorems on Limits 43

The product a fa  is a constant. By the theorems of Sec. 2.4, the 
quantity +  a2a i +  a ia 2 >s an infinitésimal. Hence, lim«x«2 =  
=  a1û'2 =  lim«1-limu2. *

Corollary. A constant factor may be taken outside the limit sign. 
Indeed, if limul = a1, c is a constant and, consequently, limc=c, 

then lim (cux) =  lime-lim ux =  c-lim ux, as required.
Example 2 .

lim 5x3  =  5 lim *3 =  5*8 =  40 
x -* 2 x  -* 2

Theorem 3. The limit of a quotient of two variables is equal to 
the quotient of the limits of these variables if the limit of the de- 
nominator is not zéro:

lim — =  i/lim o ^ O  v lim v 1 ^

Proof. Let lim u =  a, lim v = b ^ O .  Then « =  a +  a , v = b-{- P, 
where a  and p are infinitesimals.

We write the identities
u _a + a _ a  . /  a + «  a \ __  a ., a  b— fia
T ~  * + f i  — T ~ T ~ \F + $ ~ T  ) ~  b " ^ (fr + fi)

or
u _  a , a  b— fia

T - T  +  6 (6+ fi)

The fraction y  is a constant number, while the fraction
is an infinitésimal variable by virtue of Theorems 4 and 5 (Sec. 
2.4), since a b—fia is an infinitésimal, while the denominator
b (b +  fi) has the limit b2=£ 0. Thus, lim y  =  y  =  y j y

Example 3.

_ lim (3x + 5) 3 lim x + 5
3 x + 5  x - .l  _  x - .i

X ™l4x—2 ~  lim (4*—2) 4 lim x —2
X -+ 1 X -► 1

3 * 1 + 5  8

4*1—2 2

Here, we made use of the already proved theorem for the limit of a fraction 
because the limit of the denominator differs from zéro as x -*1. If the limit of 
the denominator is zéro, the theorem for the limit of a fraction is not appli-
cable, and spécial considérations hâve to be invoked.

Example 4. Find lim î-— I .
x  2 X — 2

Here the denominator and numerator approach zéro as and, consequ-
ently, Theorem 3 is inapplicable. Perform the following identical transformation:

x2— 4_(x— 2) (x + 2 )
x — 2  ~  x —2

= x + 2
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44 Ch. 2. Limit. Continuity of a Function

The transformation holds for ail values of jc different from 2 . Andso, having 
in view the définition of a limit, we can Write

v2__ 4
lim ----- — =  lim

J C -  2 X  2 X  •+■ 2

( x - 2 )  (x +  2) 
jc— 2

lim (jc+ 2 )  =  4
X  — 2

X
Example 5. Find lim ----- r . As j c  -+ 1 the denominator approaches zéro but

x  -► î  x —  I
the numerator does not (it approaches unity). Thus, the limit of the reciprocal 
is zéro:

lira f u i
X  -  1 JC

lim (je— 1 )
X  — 1__________

lim jc
X  — 1

0
1

0

Whence, by Theorem 2 of the preceding section, we hâve

11m - *-r==oo 
1 X — \

Theorem 4. If the inequalities u ^ z ^ v  are fulfilled between the 
corresponding values of three funet ions u = u(x), z = z(x) andv = 
= v(x), wkere u(x) and v(x) approach one and the same limit b as 
x —+a (or as x —+ oo), then z = z(x) approaches the same limit as 
x —>a (or as jc—►oo).

Proof. For definiteness we shall consider variations of the func- 
ctions as x — From the inequalities u ^ . z ^ . v  follow the ine-
qualities

u—b ^ .z —b ^ . v — b
it is given that

lim u = b y lim v = b
x  — a x  — a

Consequently, for e >  0 there will be a certain neighbourhood, 
with centre at the point a, in which the inequality | u — b < e  
will be fulfilled; likewise, there will be a certain neighbournood 
with centre at the point a in which the inequality |u — b | < e  
will be fulfilled. The following inequalities will be fulfilled in the 
smaller of these neighbourhoods:

— e < u —& < e  and —e < u —b < e

and thus the inequalities
— e <  z—b <  e

will be fulfilled; that is,
lim z = b

x  — a

Theorem 5. If  as x —*a (or as jc— >■ oo) the function y takes on 
nonnegative values y ^ O  and, at the same time, approaches the 
limit b, then b is a nonnegative number b ^O .
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2.5 Basic Theorems on Limits 45

Proof. Assume that b <  0, then | y —b\~^\b\-, that is, the diffé-
rence modulus |y —b | is greater than the positive number |6 | and, 
hence, does not approach zéro as x —>-a. But then y does not 
approach b as x —*a\ this contradicts the statement of the theorem. 
Thus, the assumption that b <  0 leads to a contradiction. Conse- 
quently, b^s 0.

In similar fashion we can prove that if y ^ O  then lim ÿ ^O .
Theorem 6. If the inequality v~^u  holds between corresponding 

values of two functions u =  u (x) and v = v (x) 
which approach limits as x —*a (or as x —- oo), 
then lim o ^ lim u .

Proof. It is given that v—u ^ Q .  Hence, 
by Theorem 5, lim(u—u ) ^ 0  or limo—
— lim u ^ O , and so lim lim u.

Example 6 . Prove that !lm simc =  0.
X -* 0

From Fig. 42 jt follows that if CM =  1 , x > 0 , 
then j4C =  sinjc, AB =  x » sin x < x. Obviously, when 
je < 0 we will hâve | sin jc  | <  | jc  |.  By Theorems 5 and Fig. 42
6 , it follows, from these inequalities, that lim sin jc  =

jc -*■ o
=  0 .

x
Example 7. Prove that lim sin

JC -*> o  *

Indeed,
x I x

sin -75- < | sin j c  |. Consequently, lim sin — = 0 .
* \ x  -> 0

Example 8 .  Prove t h a t  lim c o s j c = 1; n o t e  t h a t

JC -*  0

x
cos jc  =  1 — 2  sin2  —

therefore,

lim cos x =  lim ( 1 — 2  sin2  * ^  =  1 — 2  lim sin2-^-= 1 — 0  =  1 .
JC -*■ 0 JC 0  \  *  )  X  *+ 0 *

In some investigations concerning the limits of variables, one 
has to solve two independent problems:

(1) to prove that the limit of the variable exists and to establish 
the boundaries within which the limit under considération exists;

(2) to calculate the limit to the necessary degree of accuracy.
The first problem is sometimes solved by means of the following

theorem which will be important later on.
Theorem 7. I f a variable v is an increasing variable, that is, each 

subséquent value is greater than the preceding one, and if it is 
bounded, that is, v <  M, then this variable has the limit lim v =  a, 
where a ^ .M .

A similar assertion may be made with respect to a decreasing 
bounded variable quantity.
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46 Ch. 2. Limit. Corttinuity of a Function

We do not give the proof of this theorem here since it is based 
on the theory of real numbers, which we do not consider in this 
text. *

In the following two sections we shall dérivé the limits of two 
functions that find wide application in mathematics.

2.6 THE LIMIT OF THE FUNCTION AS X —► 0
x

The function is not defined for x =  0 since the numerator
and denominator of the fraction become zéro. Let us find the 

limit of this function as x —<-0. We consider 
a circle of radius 1 (Fig. 43); dénoté the cent-
ral angle MOB by x ^0 <  x <  y ^ . From Fig. 
43 it follows that

area of A  MO A <  area of sector
MOA <  area of ACOA. (1)

The area of A  MO A — y  CM ■ MB =

= y  • 1 • sinx =  y  sinx.

The area of sector MOA = y OA-AM =  y - 1 -x =  y x .

The area of & C0A  =  y OA-AC = y - 1 -tanx =  y ta n x .

After cancelling y ,  inequalities (1) can be rewritten as 

sin x <  x <  tan x

Divide ail ternis by sinx:

or

1 <  — <  —  sin x cos x

,  ̂ sinx1 >  —̂ - >  cosx

We derived this inequality on the assumption t h a t x > 0 ;  noting
that =  and cos(—x) =  cosx, we conclude that it holds

(—X) X
for x < 0  as well. But l imcosx=l ,  Iiml =  l.

X-+0 X->0

* The proof of this theorem is given in G. M. Fikhtengolts* Principles of 
Mathematical Analysis, Vol. I, Fizmatgiz, 1960 (in Russian).
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2.7 The Number e 47

Hence, the variable 2i!l£ lies between two quantities that hâve
the same limit (unity). Thus by Theorçm 4 of the preceding 
section,

lim — = 1

The graph of the function ÿ =  — is shown in Fig. 44.

Examples.

, tanx .. sin x 1 .. sin je , 1 1
1. lim ------=  lim ------ • -------= l i m ------- lim ------ =  1 - —=  1.

X  * -» « . X  C O S X  x _ 0 X  X ^ 0 c o s x  1

2 . lim 
*-►0

X -*  0 *  X - K )

sin kx .. . s i n k x  . . .  sin(Æ*) . , ,
=  lim k — t —  =  kl\m . = k - l  =  k (  ̂=  const).

X -+  0  X~*Q \ " X )
(kx-*- o)

, 2  sin2  —
0  1 — cos*  .. 2
3 . lim --------------   lim

x  x -*o  

sin a*

x
sin Y

=  lîm --------- s i n ~ =  l ' 0  =  0 .x 2

- .. sin ax .. a 
4. lim -t—s—= lim -s- • ax

lim sin ax
a  o l x

.^ oS inp* P sin P*

P*

(a =  const, p =  const).

lim Ü ü l f
x-o P*

P 1
a

p

2.7. THE NUMBER e

Let us consider the variable

( 1 + ^)"
where n is an increasing variable that takes on the values 1, 
2, 3...........

Theorem 1. The variable  ̂1 ~  , as n —*■<», has a limit bet-
ween the number s 2 and 3.
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