Lecture 4

Graph of Functions set Implicitly

Suppose the equation $F(x, y)=0$ is given.If the set of points on a plane $X O Y$ whose coordinates satisfy this equation consists of a finite number of continuous curves, each of which is a graph of an unambiguous function $y=y(x)$, then this equation is said to implicitly define the corresponding family of functions $y_{1}(x), y_{2}(x), \ldots, y_{k}(x)$. If a point $\left(x_{0}, y_{0}\right)$ lies on only one of these curves, then the condition $y\left(x_{0}\right)=y_{0}$ allows you to unambiguously select this curve from the entire family, i.e. the equation $F(x, y)=0$ and the condition $y\left(x_{0}\right)=y_{0}$ define (or specify) an unambiguous implicit continuous function in the neighborhood of the point $\left(x_{0}, y_{0}\right)$ such that $F(x, y(x)) \equiv 0, y\left(x_{0}\right)=y_{0}$.

The simplest equation of the form $F(x, y)=0$ is the equation $x-f(y)=0$, which defines the function that is the inverse of $f: y=f^{-1}(x)$. The $O Y$-axis swaps with the $O X$-axis when the plane $X O Y$ is symmetrically displayed relative to the bisector of the first coordinate angle. Thus, the curve $y=f(x)$ is symmetrical to the curve $x=f(y)$ or $y=f^{-1}(x)$ relative to this bisector. In this mapping, the continuous monotone function will be transformed into a continuous monotone function, i.e., the inverse function is unambiguous, continuous, and monotonic. If the continuous function $x=f(y)$ is not monotonous, then the curve defined by the equation $x-f(\mathrm{y})=0$ will no longer be the graph of the function $y=y(x)$, since there is no one-to-one dependence of the function on the argument.

If an equation $F(x, y)=0$ can be solved with respect to one of the variables, then the construction of a set of points (x, y) for which this equation is valid follows from the previous discussions. Sometimes you can enter a parameter t so that the equation $F(x, y)=0$ is equal to $\{x=x(t), y=y(t), t \in T\}$ (or more of these relations).

Example 1. Let's draw a sketch of the curve defined by the equation $x=y-\sin y$ in the system $X O Y$.
Solution We have that $x(k \pi)=k \pi, k \in \mathbb{Z}, x(y)$ is a monotonic odd function. A sketch of the curve in the system $Y O X$ is shown in Fig. 25, a, and a sketch of the curve defined by the equation $x=y-\sin y$ (i.e., in the system $X O Y$) is shown in Fig. 25, 6.

Fig. 25

Example 2. Let's draw a sketch of the curve defined by the equation $x=y \cdot \cos y$.
Solution: The function $x(y)$ is odd; for $y \geq 0$ have $|x| \leq y, x\left(\frac{\pi}{2}+k \pi\right)=0, x(2 k \pi)=2 k \pi$, $x((2 k+1) \pi)=-(2 k+1) \pi$. A sketch of the curve $x(y)$ in the system YOX is shown in Fig. 26, a, and the sketch of the curve $y(x)$ in the system $X O Y$ defined by the equation $x=y \cdot \cos y$ is shown in Fig. 26, 6.

Fig. 26

Example \mathbf{H}. Let's draw a sketch of the curve defined by the equation $x^{5}+y^{5}=2 x^{2} y^{2}$ in the $X O Y$ system.
Solution: Note that the point $(0,0)$ belongs to this curve. There are no other points of view $(0, y)$ on this curve. To construct the curve, enter the parameter $t=\frac{y}{x}$. This equation is then transformed as follows:

$$
x^{5}\left(1+t^{5}\right)=2 t^{2} x^{4}
$$

From this it can be seen that the equation $x^{5}+y^{5}=2 x^{2} y^{2}$ is equivalent to the relations

$$
x(t)=2 t^{2} /\left(1+t^{5}\right), y(t)=2 t^{3} /\left(1+t^{5}\right)
$$

since the point $(0,0)$ also belongs to this curve at $t=0$. The construction of such curves was shown in the previous lecture. The curve is shown in Fig. 27.

Fig. 27

Example 4. Let's draw a sketch of the curve defined by the equation $x^{4}+y^{4}=x^{2}+y^{2}$. in the $X O Y$ system

Solution: Let's move on to the polar coordinate system combined with the Cartesian coordinate system, assuming $x=r \cdot \cos \varphi, y=r \cdot \sin \varphi$. Then the equation of this curve will take the form

$$
r^{2}=\frac{1}{\cos ^{4} \varphi+\sin ^{4} \varphi}, r=0
$$

that is

$$
r^{2}=\frac{4}{3+\cos 4 \varphi}, r=0
$$

Constructing curves like this one was done in the fourth practical lesson. A sketch of this curve is shown in Fig. 28.

Fig. 28

