Lecture 3

PARAMETRIC REPRESENTATION OF A FUNCTION
Given two equations:

x=q(f) }
Y= (f) M)

where ¢ assumes values that lie in the interval [T,, T,]. To each
value of ¢ there correspond values of x and y (the functions ¢
and ¢ are assumed to be single-valued). If one regards the values
of x and y as coordinates of a point in a coordinate xy-plane,
then to each value of ¢ there will correspond a definite point in
the plane. And when ¢ varies from T, to T,, this point will de-
scribe a certain curve. Equations (1) are
called parametric equations of this curve,
t is the parameter, and parametric is
the way the curve is represented by
equations (1).

Let us further assume that the fun-
ction x=¢ (f) has an inverse, ¢ = (x).
Then, obviously, y is a function of x;

| y=1[® (x)] (2)
0 I C T Thus, equations (1) define y as a func-
Fig. 75 tion of x, and we say that the function

y of x is represented parametrically.
The explicit expression of the dependence of y on x, y=f(x),
is obtained by eliminating the parameter ¢ from equations (1).
Parametric representation of curves is widely used in mechanics.
If in the xy-plane there is a certain material point in motion and

if we know the laws of motion of the projections of this point on
the coordinate axes, then

x=9(t) ,

_re (1)
y=9() |

where the parameter ¢ is the time. Then equations (1’) are para-

metric equations of the trajectory of the moving point. Elimina-

ting from these equations the parameter ¢, we get the equation of

the trajectory in the form y=f(x) or F(x,y)=0. By way of il-
lustration, let us take the following problem.

Problem. Determine the trajectory and point of impact of a load dropped
from an airplane moving horizontally with a velocity v, at an altitude y, (air
resistance is disregarded).

Solution. Taking a coordinate system as shown in Fig. 75, we assume that
the airplane drops the load at the instant it cuts the y-axis. It is obvious that
the horizontal translation of the load will be uniform and with constant velo-
city v,
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Vertical displacement of the falling load due to the force of gravity will be
expressed by the formula

2
s=2_

Hence the distance of the load from the ground at any instant will be

The two equations

are the parametric equations of the trajectory. To eliminate the parameter ¢,
we find the value t———vi from the first equation and substitute it into the second

cquation. Then we get g(he equation of the trajectory in the form

= yy—-L x8
Yy Yo 203

This is the equation of a parabola with vertex at the point M (0, y,), the
y-axis serving as the axis of symmetry of the parabola.

We determine the length of OC. Denote the abscissa of C by X, and note
that the ordinate of this point is y =0. Putting these values into the preceding
formula, we get

0= yo—‘z%dg' XZ

THE EQUATIONS OF SOME CURVES IN PARAMETRIC FORM

£ Circlae). Given a circle with centre at the coordinate origin and with radius r
(Fig. 76).
%)enote by ¢ the angle formed by the x-axis and the radius to some point
M (x, y) of the circle. Then the coordinates of any point on the circle will be
cxpresseu in terms of the parameter ¢ as follows: y A

X=rcost,
y=rsint, }0<t<2ﬂ

whence

_ M(z,9)
These are the parametric equations of the circle.

If we eliminate the parameter ¢ from these equa- r
tions, we will have an equation of the circle con-
taining only x and y. Squaring the parametric 0
cquations and adding, we get

x?+y%=r2 (cos? { | sin? ¢)

— | 'z

or
Rtyr=r Fig. 76
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Ellipse. Given the equation of the ellipse

2 2
=1 )

Set
x=acost 2"

Putting this expression into equation (1) and performing the necessary mani-
pulations, we get

y..—:.bSint (2”)
The equations
x=acost,
y="bsint, }0<t<2ﬂ (2)

are the parametric equations of the ellipse.
Let us find out the geometrical meaning of the parameter f. Draw two
circles with centres at the coordinate origin and with radii a and b (Fig. 77).
Let the point M (x, y) lie on the ellipse,
Yi and let B be a point of the large circle with
the same abscissas as M. Denote by ¢ the
angle formed by the radius OB with the
8 x-axis. From the figure it follows directly

that

M(z,y) x=0P=acost 2"
CQ=bsint

From (2") we conclude that CQ=y; in
other words, the straight line CM is parallel
to the x-axis.

Consequently, in equations (2) ¢ is an
angle formed by the radius OB and the axis
of abscissas. The angle ¢ is sometimes called

Fig. 77 an ecceniric angle.
Cycloid. The cycloid is a curve descri-
' . bed by a point lying on the circumference
of a circle if the circle rolls upon a straight line without sliding (Fig. 78).
Suppose that when motion began the point M of the rolling circle lay at the
origin. Let us determine the coordinates of M after the circle has turned through

y

Fig. 78

?}? tangle t. If a is the radius of the rolling circle, it will be seen from Fig. 78
a
x=0P=0B—PB


podkl
Прямоугольник


but since the circle rolls without sliding, we have
OB=MB=at, PB=MK=asin

Hence, x=at —asin { =a (f —sin £).
Further,
y=MP=KB=CB—CK=a—acos{=a(l—cost)

The equations
x=a(t—sint) 0?21 3
y=a(l—cost) (3)
are the parametric equations of the cycloid. As ¢ varies between 0 and 2n, the
point M will describe one arch of the cycloid.
Eliminating the parameter ¢ from the latter equations, we get x as a function
of y directly. In the interval 0 <<t <Cm, the function y=a(l—cos ¢) has an
inverse:

t = arccos

a—y
a

Substituting the expression for ¢ into the first of equations (3), we get

a—y . a—y.
x=aarccos —=—asin | arccos —

or

- V2ay—-y2 when 0 << x<{na

a—y
X=@aarccos —

Examining the figure we note that when na<Cx<<2na

x=2na— (a arccos a-;-y_ V2ay—y“)

It will be noted that the function
x=a(t—sint)

has an inverse, but it is not expressible in terms of elementary functions. And
so the function y=f(x) is not expressible in terms of elementary functions
cither.

Note 1. The cycloid clearly shows that in certain cases it is more convenient
to use the parametric equations for studying functions and curves than the
direct relationship of y and x (y as a function of x or x as a function of y).

Astroid. The astroid is a curve represented by the following parametric
equations:

x=acosd¢

y—asind{ }o<t<2n (4)

Raising the terms of both equations to the power 2/3 and adding, we get the
following relationship between x and y:
2 2

2
x3 +y3=a3 (costt4sin?¢)
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Fig. 79

2 2 2
%9 4y8—q3 (5)

Later on (Sec. 5.12) it will be shown that this
curve is of the form shown in Fig. 79. It can
be obtained as the trajectory of a certain point
on the circumference of a circle of radius a/4
rolling (without sliding) upon another circle of
radius a (the smaller circle always remains in-
side the larger one, see Fig. 79).

Note 2. It will be noted that equations
(4) and equation (5) define more than one func-
tion y=f (x). They define two continuous func-
tions on the interval —a<x< 4 a. One takes
onl nonnegative values, the other nonpositive
values.
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