
C H A P T E R  7

COMPLEX NUMBERS. POLYNOM1ALS

7.1 COMPLEX NUMBERS. BASIC DEFINITIONS

A complex number is a number given by the expression
z = a + ib (1)

where a and b are real numbers and i is the so-called imaginary 
unit, which is defined as

i — V  — 1 or i* =  — 1 (2)

a is called the real part, and b, the imaginary part of the comp-
lex number. They are designated, respectively, as follows:

a =  Re2 , b = \m z

If a =  0 , then the number Q + ib = ib is a pure imaginary, if 
b = 0 , then we hâve the  ̂ real number a +  i'O — a. Two complex 
numbers z = a + ib and z = a—ib that differ solely in the sign of 
the imaginary part are called conjugate complex numbers.

We agréé upon the two following basic définitions.
( 1) Two complex numbers z1 = a1 + ibi and z2 — a2 + ib2 are equal.

that is, if their real parts are equal and their imaginary parts are 
equal.

(2) A complex number z is equal to zéro
2 =  a +  ib — 0

if and only if a =  0 , b = 0 .
1. Géométrie représentation of complex numbers. Any complex 

number z = a + ib may be represented in the xy-plane as a point 
A(a, b) with coordinates a and b. Conversely, every point M(x, y) 
of the plane is associated with a complex number z = x-\-iy . The 
plane on which complex numbers are represented is called the 
plane of the complex variable z, or the complex plane (Fig. 162, 
the encircled z symbol indicates that this is the complex plane).

Points of the plane of the complex variable z lying on the 
jc-axis correspond to real numbers (b =  0 ). Points lying on the 
ÿ-axis represent pure imaginary numbers, since a =  0. Therefore,
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7.1 Complex Numbers. Basic Définitions 225

in the complex plane, the jy-axis is called the imaginary axis, or 
axis of imaginaries, and the x-axis is the real axis, or axis of 
reals.

Joining the point A(a, b) to the origin, we get a vector OA. In 
certain instances, it is convenient to consider the vector OA as the 
géométrie représentation of the complex 
number z = a + ib.

2. Trigonométrie form of a complex 
number. Dénoté by <p and r ( r ^ O )  the 
polar coordinates of the point A (a, b) 
and consider the origin as the pôle and 
the positivé direction of the x-axis, the 
polar axis. Then (Fig. 162) we hâve 
the familiar relationships

a = r cos <p, 6 =  rsin<p

and, hence, the complex number may be given in the form

a +  ib =  rcosq> +  tr sinqp or z =  r (cos<p +  i sin<p) (3)

The expression on the right is called the trigonométrie form (or 
polar form) of the complex number z = a + ib; r is termed the modulus 
of the complex number z, q> is the argument (amplitude or phase) 
of the complex number z. They are designated as

r =  |z |,  q> =  arg z (4)

The quantities r and <p are expressed in terms of a and b as follows: 

r = yrai -\-bi , <p =  Arctan - j

To summarize, then,

\z \ = \a +  ib | = V 'aa +  b* 1 

argz =  arg(a +  *&) =  A r c t a n J  ^

The amplitude of a complex number is considered positive if it 
is reckoned from the positive x-axis counterclockwise, and négative, 
in the opposite sense. The amplitude <p is obviously not determined 
uniquely but up to term 2nk, where k is any integer.

Note. The conjugate complex numbers z = a-\-ib and z = a— ib 
hâve equal moduli |z | =  |z | and their arguments (amplitudes) are 
equal in absolute value but differ in sign: a rg z = —argz.
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226 Ch. 7. Complex Numbers. Polynomials

It will be noted that the real number A can also be written in 
the îorm (3), namely:

A =  | A | (cos 0 +  i sin 0 ) for A >  0 

A =  | A | (cos jx -f t sin n) for A <  0

The modulus of the complex number 0  is zéro: | 0 | =  0 . Any 
angle <p may be taken for amplitude zéro. Indeed, for any angle <p 
we hâve

0 =  0  (cos <p +  i sin ç>)

7.2 BASIC OPERATIONS ON COMPLEX NUMBERS

1. Addition of complex numbers. The sum of two complex num-
bers z1 = a1 + ib1 and zt = a2 + ibî is a complex number defined by 
the équation

Zi +  z2 =  (û! +  ibj) -f- (a2 -f- ibt) =  (at +  a2) +  i (b, +  b2) ( 1 )

From (1) it follows that the addition of complex numbers depic- 
ted as vectors is performed by the rule of the addition of vectors 
(Fig. 163a).

2. Subtraction of complex numbers. The différence of two complex 
numbers zl = a1 + ib1 and zt = at + ibt is a complex number such 
that when it is added to z2 it yields zt.

It is easy to see that
zx z2 =  (ûj -|- ib±) (fl2 “F ibt) =  {cii û2) -(- i {b2 bt) (2)

It will be noted that the modulus of the différence of two complex 
numbers is equal to the distance between the points representing 
these numbers in the plane of the complex variable (Fig. 163b)

1 * i— *! I =  V  (û i— a ,)2 +  (f»i— b2)2

3. Multiplication of complex numbers. The product of two com-
plex numbers z1 =  a1 +  tb1 and zt = at +  ibt is a complex number
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7.2 Basic Operations on Complex Numbers 227

obtained when these two numbers are multiplied as binomials by 
the rules of algebra, provided that

i* = — 1, i3 = —i, t4 =  ( — i) • i =  — i2 =  1, t* =  t, etc.

and, generally, for any intégral k,
t4* =  1, i4*+1 =  t, i4* + * = _  1, =

From this rule we get
ZiZ2 =  (ax +  ibx) (a2 +  ibt) =  axa2 +  ibxa2 + ia1bi -f i%b2

or
zfi2 = (ûiû2—&A) +  i (b +  a,b2) (3)

Let the complex numbers be written in trigonométrie form 
zi =  fi (cos <px + 1 sin <px), z2 =  r2 (cos <p2 +  i sin <p2)

then
' zxz2 =  rx (cos <px +  i sin <px) r2 (cos <p2 -f i sin <p2)

=  rxrt [cos q>j cos <p2 +  i sin <px cos <p2 +  i cos sin <p2 
+  i* sin <pj sin qpa] =  rxr2 [(cos <px cos <p2—sin q>x sin <p2)
-F i (sin q>2 cos <p2 +  cos <px sin <p2)]
=  r j t [cos (<px +  <p2) +  i sin (<px +  <p2)]

Thus,
Zi?» =  fS i  [cos (<px +  <p2) +  i sin (<px +  <p2)] (3')

i. e., the product of two complex numbers is a complex number, the 
modulus of which is equal to the product of the moduli of the factors, 
and the amplitude is equal to the sum of the amplitudes of the 
factors.

Note l. The product of two conjugate complex numbers z —a-\-ib 
and z —a— ib is, by virtue of (3), expressed as follows:

zz =  a* +  b2

or
zz =  | z |2 =  | z |J

The product of two conjugate complex numbers is equal to the 
square of the modulus of each number.

4. Division of complex numbers. The division of complex num-
bers is defined as the inverse operation of multiplication.

Suppose we hâve zx = ax +  ibx, z2 = a 4 +  ib„, | zt \ =  K âf+ bf 0. 
Then y- =  z is a complex number such that zx =  z2z. If

ai +  tbi
at + x + i y

15*
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228 Ch. 7. Complex Numbers. Polynomial s

then
ay +  iby = (a, +  ibt) (x +  iy)

or
at + iby =  (a ^—bjj) +  i (a2y +  btx) 

x  and y are found from the System of équations 
üy —atx —b̂ y, by = b^c-\-aty 

Solving this system we get
a y ( l l - \ - b y b i  ü j b y  —  O ybj

O Î + 6 Î  ’  y  a l  +  b l

and finally we hâve
„  ai<jj +  &i&2 , . atbi—aybi tA^
Z ~  a l  +  b l  + l  a l + b l  W

Actually, complex numbers are divided as follows: to divide 
z1= a1 + ibl by z, = at + iba, multiply the dividend and divisor by 
a complex number conjugate to the divisor (that is, by at —ibt). 
Then the divisor will be a real number; dividing the real and 
imaginary parts of the dividend by it, we get the quotient

ai + ibi _  (qt -f- tby) (aï—tbj) _
(û2 ib2) (a*—ibt)

( a y a t + b y b j  +  i  ( a 8 t t — a j b t )  _  q x a 2 - H b y b 2  . .  a A — a x b t  

~  a l  +  b l  ~  a l + b l  ^  a î + * î

If the complex numbers are given in the trigonométrie form 

zi =  r i (cos 9i + 1 s*11 *Pi)» z» — r% (cos <P* + 1 sin *P*)
then

t  =  McoIy; +  !sl!n y j ==t  [cos(q>x q>2) +  i sin(«pt <P*)] (5)

To verify this équation, multiply the divisor by the quotient:

rt (cos <pt -f i sin <p2) [cos («h—q>2) +  i sin (<px — <p2)]
'2

=  r* 7 7  fcos («P» +  «Pi—9 .) +  i s»n (<p„ +  q>!—<p,)J =  rx (cos <px +  i sin <px)

Thus, the modulus of the quotient of two complex numbers is equal 
to the quotient of the moduli of the dividend and the divisor; the 
amplitude of the quotient is equal to the différence between the 
amplitudes of the dividend and divisor.

Note 2 . From the rules of operations involving complex num-
bers it follows that the operations of addition, subtraction, multi-
plication and division of complex numbers yield a complex number.
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7.3 Powers and Roots of Complex Numbers 229

If the rules of operations on complex numbers are applied to 
real numbers, these being regarded as a spécial case of complex 
numbers, they will coïncide with the ordinary rules of arithmetic.

Note 3. Returning to the définitions ©f a sum, différence, pro- 
duct and quotient of complex numbers, it is easy to show that if 
each complex number in these expressions is replaced by its con- 
jugate, then the results of the aforementioned operations will yield 
eonjugate numbers, whence, as a particular case, we hâve the 
following theorem.

Theorem. I f  in a polynomial with real coefficients
Atxn-¥A1xm~1 + . . .  + A n

we put, in place of x, the number a + ib and then the eonjugate 
number a— ib the results of these substitutions will be mutually 
eonjugate.

7.3 POWERS AND ROOTS OF COMPLEX NUMBERS

1. Powers. From formula (3') of the preceding section it follows 
that if n is a positive integer, then

[r (cos qp -f- i sin q>)] " =  rn (cos nq> + i sin n<p) (1)

This formula is called De Moivre’s formula. It shows that when 
a complex number is raised to a positive intégral power the modulus 
is raised to this power, and the amplitude is multiplied by the 
exponent.

Now consider another application of De Moivre’s formula.
Setting r =  l in this formula, we get

(cos <p +  i sin <p)n =  cos mp +  i sin mp

Expanding the left-hand side by the binomial theorem and 
equating the real and imaginary parts, we can express sin/np and 
cosnqp in terms of powers of sinq> and cosqp. For instance, if 
n =  3 we hâve

cos* q> +  i 3 cos2 <p sin q> — 3 cos qp sin2 <p — i sin* qp =  cos 3<p +  i sin 3f 
Making use of the condition of equality of two complex numbers, 
we get

cos 3<p =  cos* <p—3 cos qp sin2 qp 
sin 3qp =  — sin* <p +  3 cos2 <p sin <p

2. Roots. The nth root of a complex number is another complex 
number whose nth power is equal to the radicand, or

f / r  (cos qp-f-i sin qp) =  p (cos \|j +  i sin ip)
if

p" (cos mj> -f- i sin m|î) =  r (cos qp +  i  sin qp)
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230 Ch. 7. Comptex Numbers. Polynomials

Since the moduli of equal cotnplex numbers must be equal, 
while their amplitudes may differ by a multiple of 2n, we hâve

Whence we find
p " =  r, m |3 =  <p +  2A:n 

P = y - r .  *  =

where k is any integer, Y  r is the principal (positive real) root 
of the positive number r. Therefore,

j / r  (cos q> + 1 sin<p)= r  ̂cos -|_ ; sin  ̂ (2)

Giving k the values 0, 1, 2, . . . ,  n — 1, we get n different values 
of the root. For the other values of k , the amplitudes will differ 
from those obtained by a multiple of 2j i , and, for this reason, 
root values will be obtained that coïncide with those considered.

Thus, the nth root of a complex number has n different values.
The nth root of a real nonzero number A also has n values, 

since a real number is a spécial case of a complex number and 
may be represented in trigonométrie form:

if i4 > 0 , then 4 =  | j4|(cos0 +  /s in 0 ) 
if A <  0, then /l =  ji4|(cosn +  t sinn)

Example I. Find ail the values of the cube root of 
unity.

Solution. We represent unity in trigonométrie form: 

1 =  co s0  +  isin 0

By formula (2) we hâve

3 / l  =  3 / CosO +  isin  0 = c o s ° ~ ^ ^ Jt- |

Setting k equal to 0, 1, 2, we find three values of the root:

. _ 2j i  , . . 2n
x1 =  cosO +  t s in O = l ,  x2=  c o s - j - f i s in  —  t

4ji . . . 4ji *3 =  COS-r-+lSin —

i sin
0 +  2fcji

Noting that

2jt
C0ST ---- T '  sin 3

2n y  3
cos -

4jï ___ 1_ sjn 4jt__ V J
2

we get

, 1 , .  V~3 1 . v i
Xi — 1 » Jfj — g -J- 1 g » 3̂ 2 * 2

In Fig. 164, the points A, B% C are géométrie représentations of the roots 
obtained.
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7.4 Exponential Function wilh Complex Exponent 231

3. Solution of a binomial équation. An équation of the form
xn = A

is called a binomial équation. Let us find jts  roots.
If A is a real positive number, then

* =  |/Â ( c o s ? — +  /sin — ) (* =  0 , 1, 2 , . . . .  n — 1)

The expression in the brackets gives ail the values of the nth 
root of 1.

If A is a real négative number, then
n/î—r \(  ji +  2£ji . . . j i+ 2Aji\

* =  K M H cos —̂ -----b I sin

The expression in the brackets gives ail the values of the nth 
root of —1.

If A is a complex number, then the values of x are found from 
formula (2 ).

Example 2. Solve the équation

x « = l
Solution.

x =  £ / cos 2kn +  i sin 2kn =  cos isin

Setting k equal to 0, 1, 2, 3, we get

x1 =  c o s0  +  i sin 0 =  1

2 j i  . . . 2 j i  
x2 =  cos — - f  i sin —  =  i

4j i  , . . 4j i  t 
x8 =  cos 1 sin - ç - =  — I

6 j i  . . . 6 j i  
xk — cos ——\-1 sin —r— =  — i 

4 4

7.4 EXPONENTIAL FUNCTION WITH COMPLEX EXPONENT AND ITS
PROPERTIES

Let z = x +  iy. If x and y are real variables, then z is called 
a complex variable. To each value of the complex variable z in the 
xÿ-plane (the complex plane) there corresponds a definite point 
(see Fig. 162).

Définition. If to every value of the complex variable z of a 
certain range of complex values there corresponds a definite value 
of another complex quantity w, then w is a function of the complex 
variable z. Functions of a complex variable are denoted by w=f(z)  
or w = w(z).
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232 Ch. 7. Complex Numbers. Polynomials

Here, we consider the exponential fonction of a complex variable:
w — e*

or
t0 =  e*+'>

The complex values of the function w are defined as follows*:
e*+l* =  e* (cosÿ-f i sin y) (1)

that is 

Examples:

1 .  2 =  l + Y  l »

2. a =  0 + - i ,

to (z) =  e* (cos t/ -f i sin y)

,+- t '  ( n . . . n \  ( y~2 . y~~2 \e * = e  ^cosT 4 - i s in T J = e ^ — + , —

0+-5-* . / « , . . n ’\
e 2 = e °  f c o s y + lSin y  J =  *•

(2)

3 . z = l + i ,  e1+/ = e 1(cos 1 + is in  1) « 0 .5 4  +  I-0.83.
4. z =  x is a real number, e*+°;= e j; (cos 0 + i s i n  0 ) =  *̂ is an ordinary ex-
ponential function.

Properties of an exponential function.
1. If Zj and z2 are two complex numbers, then

e2i+z> =
Proof. Let

then
z1 = x1 +  iy1, z2 = x2 + iy2

(3)

gZi+2* =  g (* i + i i / i )+  (xt + i y t ) =  g(Xt + xt ) +  i (yt + y s)

=  ̂ e x> [cos (y1 +  yt) +  i sin {yy -f y J] (4 )

On the other hand, by the theorem of the product of two complex 
numbers in trigonométrie form we will hâve
e*te2* — e*i+iV‘ex‘+l«* =  e** (cos y1 -f » sin yt) ex• (cos y2 -f i sin y2)

=  e*tex> [cos {yx +  y2) +  i sin (y2 +  y2)] (5 )

In (4) and (5) the right sides are equal, hence the left sides are 
equal too:

ezt+zt = (pie2*

2. The following formula is similarly proved:

e2» (6)

* The advisability of this définition of the exponential function of a complex
variable will also be shown later on (see Sec. 13.21 and Sec. 16.18 of Vol. II).
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7.4 Exportential Function with Complex Exportent 233

3. If m is an integer, then
(ez)m =  efnz (7)

For m > 0 , this formula is readily obtained from (3); if m < 0 , 
then it is obtained from formulas (3) and (6 ).

4. The identity
<*+2 (8)

holds.
Indeed, from (3) and (1) we get

gz+2it/ _  gze2ni — gt (cos 2n -f- i sin 2n) = ez

From identity (8 ) it follows that the exponential function e*is a 
periodic function with a period of 2ni.

5. Let us now consider the complex quantity
w =  u (x) -f- iv (x)

where u(x) and o(x) are real functions of a real variable x. This 
is a complex function of a real variable.

(a) Let there exist the limits
lim u (x) =  u (x0), lim v(x)=v  (x,)

x-+x 0 x - *x0

Then u (x„) +  iv (x0) =  w0 is called the limit of the complex variable w.
(b) If the dérivatives u' (x) and v' (x) exist, then we shall call 

the expression
w'x = u'(x) + iv'(x) (9)

the dérivative of a complex function of a real variable with respect 
to a real argument.

Let us now consider the following exponential function:
HD = e**+ =  g(ot+̂  x

where a  and P are real constants and x is a real variable. This 
is a complex function of a real variable, which function may be 
rewritten, according to (1), as follows:

w = etX [cos Px +  i sin Px]
or

w = e** cos Px +  ie•* sin Px

Let us find the dérivative w'x. From (9) we hâve

w'x =  (e*x cos Px)' +  i (e** sin Px)'
=  e•* (a cos px—P sin Px) +  te** (a sin Px +  P cos px)
=  a [e“* (cos Px +  i sin Px)] +  t'P [e** (cos Px +  i sin Px)] 
=  (a +  »P) [e** (cos px +  i sin Px)] =  (a +  t'P) e(*+,p)*
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234 Ch. 7. Complex Numbers. Polynomials

To summarize then, if a> =  eu+,P)x, then w' =  (a +  tP)e(*+'?)x or
[e<«+ *J ' =  ( a  +  ip) e(*+ * (10)

Thus, if k is a complex number (or, in the spécial case, a real 
number) and x is a real number, then

(«**)'=&*» (9')

We hâve thus obtained the ordinary formula for differentiating an 
exponential function. Further,

(ekx)" -- [(«**)'] ' =  k (ekx)' =  k'e1* 

and for arbitrary n
(g**)(n) _  knekx

We shall need these formulas later on.

7.5 EULER’S FORMULA.
THE EXPONENTIAL FORM OF A COMPLEX NUMBER

Putting x =  0 in formula (1) of the preceding section, we get
e'*=cos# +  is in 0  (1)

This is Euler’s formula, which expresses an exponential function 
with an imaginary exponent in terms of trigonométrie functions. 

Replacing y by —y in (1) we get
e~ly =  cos y — i stn y (2)

From (1) and (2) we find cos y and sin y:
e / y + e - i y  .

cos y = 2 . )
e‘y — e - i y  ( (3)

sm y = — i r -  J

These formulas are used in particular to express powers of cosqp 
and sin<p and their products in terms of the sine and cosine of 
multiple arcs.

Example 1. cos2  y =  (̂ ‘y + ^ ~ ly —.1 (el*y+  2 + e ~ ‘*y)

= ÿ  [(cos 2 y +  isin  2 ( / ) + 2  +  (cos 2 y — i sin 2y)]

= i -  ( 2  cos 2 y + 2 ) =  y  ( 1  +  cos 2 y)

Example 2. cosa q> sina <p=
(ety+e-h 
V 2

(ei2r —e~l • , , i•ftCOS4q>+x4-4ta
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7.6 Factoring a Polynomial 235

The exponential form of a complex number. Let us represent a  
complex number in trigonométrie form:

z =  r (cos <p -f-i sin ç)

where r is the modulus of the complex number and q> is the ar-
gument (amplitude) of the complex number. By Euler’s formula,

cos <p +  » sin q> =  e‘f (4)

Thus, any complex number may be represented in the so-called 
exponential form:

z =  re‘f

Example 3. Represent the numbers 1, i, —2, —i in exponential form. 
Solution. 1 =  cos 2kn +  i sin 2kn =  e2kni

n  .
j i  . . . n  -ô-* 

i =  cos y - f i  sin 1

—  2  =  2 (cos j i  -f- i sin j i ) =  2eni 

— / =  c o s (  — - £ - ) + ' sin (  —

By Properties (3), (6 ), (7), Sec. 7.4, of an exponential function, 
it is easy to operate on complex numbers in exponential form. 

Suppose we hâve
*i =  z» =  rie‘,P*

then
z1-zî =  =  rxr%ë  (fi+vt)

zt r2ei^t r 2

( 5 )

(6)

zn =  (re/?)n =  rnein* ( 7 )

___  . q> +  i k n

yfreiv = ÿ 7 e  n (£ =  0 , 1 , 2 ......... n — 1) (8 )

Formula (5) coïncides with (3') of Sec. 7 .2 ; (6 ), with (5) of 
Sec. 7.2; (7), with (1) of Sec. 7.3; (8) with (2) ot Sec. 7.3.

7.6 FACTORING A POLYNOMIAL

The function
f(x) = A0x" +  A 1x " - ' + . . . + A n

where n is an integer, is known as a polynomial or a rational 
intégral function of x; the number n is called the degree of the 
polynomial. Here, the coefficients A0, Au . . . ,  An are real or 
complex numbers; the independent variable x can also take on 
both real and complex values. The root of a polynomial is that 
value of the variable x  at which the polynomial becomes zéro.
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236 Ch. 7. Complex Numbers. Polynomials

Theorem 1 (Remainder Theorem). Division of a polynomial f(x) 
by x — a yields a remainder equal to fia).

Proof. The quotient obtained by the division of f(x) by x —a 
is a polynomial (x) of degree one less than that of f(x), and 
the remainder is a constant R. We can thus Write

f ( x )  =  ( x — a ) f 1 (x) +  R  (1)

This équation holds for ail values of x different from a (division 
by x —a when x =  a is meaningless).

Now let x approach a. Then the limit of the left side of (1) 
will equal /(a), and the limit of the right side will equal R. 
Since the functions / (x) and {x—a) f t (x) +- R are equal for ail 
x ^ a ,  their limits are likewise equal as x —*a, that is, f(a) = R.

Corollary. I f  a is a root of tne polynomial, that is, if f(a) =  0, 
then x —a divides f(x) without remainder and, hence, f(x) is repre- 
sented in the form of a product

f (x) = (x—a) f 1 (x)

where f t (x) is a polynomial.
Example 1. The polynomial f ( x) =  x*— 6x2 + l l x — 6  becomes zéro for x = I ;  

thus, /  (1) =  0 ,  and so x — 1 divides this polynomial without remainder:

x3— 6x2 +  1 lx — 6  =  {x— 1) (x2— 5 x + 6 )

Let us now consider équations in one unknown, x.
Any number (real or complex) which, when substituted into the 

équation in place of x, converts the équation into an identity is 
called a root of the équation.

Example 2 . The numbers xx =  ̂  , x2 =  , x3 =  — - . . . .  are the roots of

the équation c o s x = s in x .

If the équation is of the form P (x) =  0, where P (x) is a poly-
nomial of degree n, it is called an algebraic équation of degree n. 
From the définition it follows that the roots of an algebraic équa-
tion P (x) =  0 are the same as are the roots of the polynomial P (x).

Quite naturally the question arises: Does every équation hâve 
roots?

In the case of nonalgebraic équations, the answer is no: there are 
nonalgebraic équations which do not hâve a single root, either real 
or complex; for example, the équation e* =  0 . *

* Indeed, if the number x1 =  a-\-ib were the root of this équation, we 
would hâve the identity eo+ft =  0or (by Euler’s formula) ea (cos 6 + i  sin b) =  0. 
But ea cannot equal zéro for any real value of a; neither is cos b-)-i sin b equal 
to zéro (because the modulus of this number is V cos2 b + s in 2 b =  1 for any b). 
Hence, the product (cos 6 + i  sin b) ^  0, i.e., 0; but this means
that the équation e* =  0  has no roots.
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7.6 Factoring a Polynomial 237

But in the case of an algebraic équation the answer is yes. This 
is given by the fundamental theorem of algebra.

Theorem 2 (Fundamental Theorem of Algebra). Every rational 
intégral function /(jc) has at least one root, real or complex.

The proof of this theorem is given in higher algebra. Here we 
accept it without proof.

With the aid of the fundamental theorem of algebra it is easy 
to prove the following theorem.

Theorem 3. Every polynomial of degree n may be factored into 
n linear factors of the form x —a and a factor equal to the 
coefficient of x".

Proof. Let /(jc) be a polynomial of degree n:

f  (jc) =  A0xn +  Aj*""1 +  . . .  +  A„

By virtue of the fundamental theorem, this polynomial has at 
least one root; we dénoté it by ay. Then, by a corollary of the 
remainder theorem, we can Write

f(*) = (x—a1) fAx)

where f l (x) is a polynomial of degree n — 1; f l (x) also has a root. 
We designate it by at. Then

fi (x) =  (x—at) f t (x)

where f t (x) is a polynomial of degree n —2. Similarly,

/» (x) =  (x—a3)fAx)

Continuing tnis process of factoring out linear factors, we arrive 
at the relation

fn-Ax) = (x— an)f„

where fn is a polynomial of degree zéro, i.e., some specified num- 
ber. This number is obviously equal to the coefficient of jc"; that
•s . f n  -^o*

On the basis of the équations obtained we can Write

f  {x) = A0 {x a,) (jc—a ,) . . .  (jc—a„) (2 )

From the expansion (2) it follows that the numbers a„ a%, . . . ,  an 
are roots of the polynomial /(jc), since upon the substitution jc =  a„ 
jc =  a„ . . . .  x =  a„ the right side, and hence, the left, becomes zéro.

Exam ple 3. T he  po lynom ial f(x) = r?—6 x * + 1 Ix— 6 becomes zéro w hen

x=  I, x — 2, x =  3

T herefore,
* • — 6 x * + 1 U — 6 =  (x — 1) (* — 2) (x—3)
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No value x = a that is different from alt a2, . . . ,  a„ can be a 
root of the polynomial f(x), since no factor on the right side of 
(2) vanishes when x = a. Whence the following proposition.

A polynomial of degree n cannot hâve more thon n distinct roots. 
But then the following theorem obtains.
Theorem 4. I f  the values of two polynomials of degree n, <pj (x) 

and <p2 ( j c ) , coincide for n -f 1 distinct values a0, alt a2, . an of 
the argument x, then these polynomials are identical.

Proof. Dénoté the différence of the polynomials by f(x):

/(*) =  «Pi W —9* (*)
It is given that f(x) is a polynomial of degree not higher than 

n that becomes zéro at the points alt . . . ,  an. It can therefore be 
represented in the form

f  (x) =  A0 (x— at) (x—a„) . . .  (x— a„)
But it is given that f  (x) also vanishes at the point a0. Then f  (a0) =  0 
and not a single one of the linear factors equals zéro. For this 
reason, A0 = 0  and then from (2) it follows that the polynomial 
f(x) is identically equal to zéro. Consequently, q)x ( jc ) —q>2 (x )  =  0  

or «PiWasÇjC*).
Theorem 5. I f  a polynomial

P (x) =  A0xn +  A s " - 1 +  ■ ■ ■ +  An. xx +  An
is identically equal to zéro, ail its coefficients equal zéro.

Proof. Let us Write its factorization using formula (2):
P (x) =  A0xn +  • • • + A „.1x+ A m =  A0 (x—ax) . . .  (x — an) ( 1 ')

If this polynomial is identically equal to zéro, it is also equal to 
zéro for some value of x different from û1( . . . ,  an. But then none 
of the bracketed values x —alt . . . ,  x — a„ is equal to zéro, and, 
hence, i4o =  0 .

Similarly it is proved that AX = Q, At = 0, and so forth. 
Theorem 6. If  two polynomials are identically equal, the coeffi-

cients of one polynomial are equal to the corresponding coefficients 
of the other.

This follows from the fact that the différence between the 
polynomials is a polynomial identically equal to zéro. Therefore, 
from the preceding theorem ail its coefficients are zéros.

Example 4. If the polynomial ajp-\-bx*-}-cx-\-d is identically equal to the 
polynomial x*—5x, then a = 0 ,  6 = 1 , c =  —5, and d =  0.

7.7 THE MULTIPLE ROOTS OF A POLYNOMIAL

If, in the factorization of a polynomial of degree n into linear 
factors

f(x) = A0(x—a1)(x— at) . . .  (x—an) (1)
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7.7 The Multiple Roots of a Polynomial 239

certain linear factors tum out the same, they may be combined, 
and then factorization of the polynomial will yield

f  (x) =  A0 ( x - a j *  ( x - a 2)*>. . .  (x - a j * ~  (V)
Here

^1 +  k* +  • • • +  km — n
In this case, the root ax is called a root of multiplicity klt or a 
£x-tuple root, at, a root of multiplicity k2, etc.

Example. The polynomial ^ (x )= xs— 5 x * + 8x —4 may be factored into the 
following linear factors:

f (x) =  (x— 2 ) (x— 2 ) (x— 1 )

This factorization may be written as follows:

f(x) =  ( x - 2 ) » ( * - l )

The root ox =  2  is a double root, O j = l  is a simple root.

If a polynomial has a root a of multiplicity k, then we will 
consider that the polynomial has k coincident roots. Then from 
the theorem of factorization of a polynomial into linear factors 
we get the following theorem.

Every polynomial of degree n has exact ly n roots ( real or complex). 
Note. Ail that has been said of the roots of the polynomial

f(x) = A0xn +  A1x ' ' - ' + . . . + A n

may obviously be formulated in terms of the roots of the algeb- 
raic équation

A0xn+ A 1xn- i + . . . + A n = o 

Let us now prove the following theorem.
Theorem. If, for the polynomial /(je), ax is a root of multiplicity 

kt >  1, then for the dérivative / ' (je) this number is a root of 
multiplicity k l— 1.

Proof. If ax is a root of multiplicity >  1, then it follows from 
formula (T) that

f(x) = (x— ûi)*'«p(jc)

where <p (je) =  (je—a2)*>. . .  (x—am)km does not become zéro at x =  ax; 
that is, <p(a1)=,£0. Difîerentiating, we get

Put 

Then 

and here

f  (*) =  {x—a,)"'-19  (x) +  (x—ûj)*19 ' {x)
=  (x— ûj)*1"1 [*i9  (*) +  (x— a j  9 ' (je)]

9 (Je) =  ̂ 9  (Je) +  (je— a,) 9 ' (je)

n x )  = ( x - a j » - ' V ( x )

9  (ax) =  Ax9  (at) +  (ax—a,) 9 ' (a,) =  * ,9  (a,) =/= 0
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In other words, x = al is a root of multiplicity kx— 1 of the 
polynomial / ' (x). From the foregoing proof it follows that if kx = 1, 
then at is not a root of the dérivative / ' (x).

From the proved theorem it follows that ax is a root of multi-
plicity kx—2 for the dérivative f  (x), a root of multiplicity kx—3 
for the dérivative (x) . . . ,  and a root of multiplicity one (simple 
root) for the dérivative /u,-1) (x) and is not a root for the déri-
vative f (ki) (x), or

/(«i) =  0 . / ' (ax) — 0 , f"(a1) = 0 , . . . .  /**■-« (fl|) =  0
but

/ (*>K)¥= 0

7.8 FACTORING A POLYNOMIAL IN THE CASE 
OF COMPLEX ROOTS

In formula (1), Sec. 7.7, the roots alt as, . . . , a n may be either 
real or complex. We hâve the following theorem.

Theorem. If  a polynomial f (x) with real coefficients has a complex 
root a + ib, it also has a conjugate root a—ib.

Proof. Substitute, in the polynomial f(x), a +  ib in place of x, 
raise to a power and collect separately terms containing i and 
those not containing i; we then get

f(a + ib) = M + iN,

where M and N are expressions that do not contain i.
Since a + ib is a root of the polynomial, we hâve

f  (a + ib) = M + iN = 0
whence

Af =  0, N = 0

Now substitute the expression a — ib for x in the polynomial. 
Then (on the basis of Note 3 at the end of Sec. 7.2) we get the 
conjugate of the number A1+iN,  or

f (a — ib) = M — iN

Since Af =  0 and N =  0, we hâve f (a —ib) = 0; a—ib is a root of 
the polynomial.

Thus, in the factorization

f (x) ■■= Aa (x—a,) (x—a2) . . .  (x—an)

the complex roots enter as conjugate pairs.
Multiplying together the linear factors that correspond to a 

pair of complex conjugate roots, we get a trinomial of degree two
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7.9 Interpolation. Lagrange’s Interpolation Formula 241

with real coefficients:
[x—(a -f ib)] [x—(a—ib)]

=  [(x—a)—ib] [(x—a) -±- ib]
=  (x—a)2 +  b* — x2—2ax-f a2 +  b2 =  x2 +  px + q

where p =  — 2a, q = a2 + b2 are real numbers.
If the number a-\-ib is a root of multiplicity k, the conjugate 

number a—ib must be a root of the same multiplicity k, so that 
factorization of the polynomial will yield the same number of 
linear factors x—(a + ib) as those of the form x—(a — ib).

Thus, a polynomial with real coefficients may be factored into 
factors with real coefficients of the first and second degree of cor- 
responding multiplicity; that is,

f  (x) =  A0 (x— aj*  (x—a2)*>
. . .  (x—a,)*'(x2 +  pjx+  ?!)'* . . .  (x2 +  psx +  çs)‘s

where
+  ̂ 2 ~t~ • • • +  +  2 /j +  • ..  +  2 ls — n

7.9 INTERPOLATION. 
LAGRANGE’S INTERPOLATION FORMULA

Let it be established, in the study of some phenomenon, that 
there is a functional relationship between the quantities y and x 
which describes the quantitative aspect of the phenomenon; the 
function t/ =  <p(x) is unknown, but 
experiment has established the va-
lues of this function y0, yx, y2, . . . ,  
y„ for certain values of the argu-
ment x„ x_, in the
interval [a, b].

The problem is to find a func-
tion (as simple as possible from 
the computational standpoint; for 
example, a polynomial) which will 
represent the unknown function 
y= ip (x) on the interval [a, b] either 165
exactly or approximately. In more
abstract fashion the problem may be formulated as follows: given 
on the interval [a, b] the values of an unknown function 
y = <p (x) at n+  1 distinct points x0, xt, . . . ,  x„:

*/o =  <P(*o). ÿ i  =  <P(*i). • • • ,  yn =  'f(xn)
It is required to find a polynomial P (x) of degree that 
approximately expresses the function <p(x).

It is natural to take a polynomial whose values at the points 
x0, Xj, x,, . . . .  x„ coincide with the corresponding values y0, ylt
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242 Ch. 7. Comptex Numbers. Polynomials

Ht, . y„ of the function <p(jt) (Fig. 165). Then the problem, 
which is called the “problem oî interpolating a function”, isformulated 
thus: for a given function <p(x) find a polynomial P(x) of degree 

which, for the given values of x0, xlt . . . ,  xn, will take on 
the values

0« =  <P(*o). &  =  <P ( * i ) .  • • • .  yn =
For the desired polynomial, take a polynomial of degree n of 

the form
P (x) =  Co (x—Xi) (*—x2) ■ ■ ■ (x—xn)

+  C, (x— x0) (x—x3) . . .  (x—xn)
+  C2 (x—x0) (x—xx) (x—x3) . . . (X—xn)

+  • • • +Cn (X X0) (X— Xt) . . . (X— (1 )

and define the coefficients C0, Clt . . . .  C„ so that the following 
conditions are fulfilled:

P(x0) = y 0, P(x1) = y1, . . . .  P(x„) = y„ (2)

In (1) put x =  x0; then, taking into account (2), we get
y<> ”  C0 (jc0 xx) (x0 X 2 ) . . .  (x0 xn)

whence
q  ___________ y*________

0 ( * 0 — * l )  ( * 0 — X i )  . . .  ( Xo — X„)

Then, setting x = xlt we get

9i =  c i (Xt—x,,) (J?!—x3) . . .  (Xt—X")
whence

q  —_______ ïi_______
1 (Xl — Xi) (Xi—Xi)... (Xi—xn)

In the same way we find
q   ___________ y*________

2 (*2— *o) ( X i — X l )  (Xt  —  X3) .  . . ( X3 — Xn )

q  _______________ y_n_____________
" (xn—x0) (xn — xt) ( X n — X 3 ) . .  . ( X „ - X n - X)

Substituting these values of the coefficients into (1), we get
p  /  jA  =  ( X  —  X j ) ( x  —  X j ) . . . ( X  —  x„)

. ( x — x „ ) ( x — x t ) . . . ( x — x „ )

^  ( X l — X„)  ( X i — X 3 ) . . . ( X i  — x „ ) y i

■ (x—X p ) ( X — X j ) ( X — x3) . . . ( x — x„)
"1"  ( x 3 — x „ )  ( x t — X i )  ( x . , — x 3) . . . ( x 3 — x n ) y *

I (x—X 0) ( x — X j ) . . . ( x — X n - j )

( x „ — x 0) ( x „ — x i ) . . . ( x „ — x a - i ) y n

This formula is called Lagrange's interpolation formula.

(3)
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7.10 Newton's Interpolation Formula 243

Let it be noted, without proof, that if <p (x) has a dérivative of 
the ( n+l ) t h  order on the interval [a, b], the error resultingfrom 
replacing the function <p(x) by the polynomial P(x), i. e., the 
quantity R(x) = <p(x)—P(x), satisfies the inequality

IR  (*) I <  I (* — x 0) (* — * , ) . .  . ( x — x J | ^ :pTj-t max|q)<n+1>(x)|

Note. From Theorem 4, Sec. 7.6, it follows that the polynomial 
P(x) which we found is the only one that satisfies the given 
conditions.

There are other interpolation formulas, one of which (Newton’s) 
is considered in Sec. 7.10.

Example. From experiment we get the values of the function y =  q>(x); 
i/o =  3 for x0 = l ,  t/i =  — 5 for x, =  2, y t =  4 for x2 =  — 4. ft is required to 
represent the function y  =  <p(x) approximately by a polynomial of degree two. 

Solution. From (3) we hâve (for n =  2):

(x— 2 ) (x + 4 ) 0 , (x— l) ( x + 4 ) / 
W (1 — 2) ( 1 +  4 )J (2— 1) (2 +  4) '

(x— l)(x — 2 ) 
( - 4 - 1 )  ( - 4 - 2 )

or

p (*) = “ | x l
123 252
30 30

7.10 NEWTON’S INTERPOLATION FORMULA

Suppose we know ( n + 1) values of a function cp (x), namely 
y0, y» •••. Vn for ( n + 1) values of the argument x0, jclt . . . ,  x„. 
The values of the argument are equally spaced. We dénoté the 
constant différence of the arguments by h. This yields a table of 
values of the unknown function y = cp(jc) for respective values of 
the argument.

X *0 * 1 = * 0  +  h Xs =  x t  +  2h * n  =  * 0 + n h

*
y yo y\ y a • • • Vn

Let us set up a polynomial of degree not greater than n that 
takes on appropriate values for the corresponding values of x. 
This polynomial will represent the function <p(x) in approximate 
fashion.
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We introduce the following notation:

A|/»=i/i—y*. Ayt =y»—yi, &y*=y3—y3, ••• 
l^y3 = y3— 2̂ 1 +  ̂  =  ^ ! —A</„, A2(/i =  Aÿ, — Aÿx, . . .
Aa«/» =  ÿ3— %2 +  3«/1—ÿ„ =  A^, —A^0, . . .

ABy0 =  An- ^ 1- A n- 1ÿ0

These are the so-called first, second, nth différences.
We Write down a polynomial that takes on the values y0, yl 

for xa and xlt respectively. This is a polynomial of the first degree,

Pi(x) = y0 + Ay0^ !i (1)

Indeed

Pi (*) |*=*. =  I/o. Pi U=x, =ÿ, +  Aÿ#|  = !/« +  (l/i—I/o) = l/l

Now Write down the polynomial that takes on the values ya, 
ylt y2 for x0, xlf x2, respectively. This is a polynomial of degree 2:

P,  (x) =  yt +  Ay0 ^  ^  ( £ = *  - 1 ) (2)

Indeed,
P 2 |x=*o = |/o> P 2 U = * ,=  l/l>

^ U x .= |/„  +  Aÿ0 .2  +  ^ ^ ( ^ - l )  =  «/2

A polynomial of degree three will look like this:

P.  +

+ T i T (3)

Finally, a polynomial of degree n taking on the values t/#, ÿlf 
yit . . . ,  yn for the respective values x0, xlt x2, . . . ,  x„ will be of 
the form

P . W  -  ÿ. +  A». ^ ^  ^  ^  - 1 ) +  ■ • •

This can be seen at once by direct substitution. This is the Newton 
interpolation formula (or the Newton interpolation polynomial).

Actually, the Lagrange polynomial and the Newton polynomial 
are identical for the given table of values but are written diffe-
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7.11 Numerical Différentiation 245

rently, since a polynomial of degree not exceeding n and assuming 
( n + 1) values for ( n + 1) given values of x is found in unique 
fashion.

In many cases, Newton’s interpolation polynomial is more 
convenient than Lagrange’s interpolation polynomial. The peculj- 
arity of this polynomial lies in the fact that when passing from 
a polynomial of degree k to one of degree k-\-\ the first ( £ + 1) 
terms remain unchanged, and we add one new term, which for 
ail preceding values of the argument is zéro.

Note. The Lagrange interpolation formula [see formula (3), 
Sec. 7.9] and the Newton interpolation formula [see formula (4), 
Sec. 7.10] are used to détermine values of a function on the intervàl 
x0 <  x <  x„. If these formulas are used to find values of the 
function for x < x 0 (this can be done for small \x —x0|), then we 
say that the table is extrapolated backward. If the value of the 
function is sought for x >  x„, then we say that the table is extra-
polated forward.

Suppose the values of some unknown function qp(x) are given 
in tabular form, say, by the table of Sec. 7.10. It is required to 
approximate the dérivative of the function. The problem is solved 
by constructing the Lagrange (or Newton) interpolation polynomial 
and then taking the dérivative of that polynomial.

Since equally spaced tables of the argument are ordinarily 
employed, we will make use of the Newton interpolation formula. 
Suppose we hâve three values of the function, y0, ylt yît for the 
values x0, xlt xt of the argument. Then write clown polynomial 
(2) of Sec. 7.10 and differentiate it to get the approximate value 
of the dérivative function on the interval

If we consider a third-degree polynomial [see (3), Sec. 7.10], 
then différentiation yields the îollowing expression for the dérivative:

7.11 NUMERICAL DIFFERENTIATION

( 1)

For x = x0 we hâve

<P' ( x0) æ P ’i (x0) = h 2h (2)

(3)
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246 Ch. 7. Complex Numbers. Polynomials

In particular, for x = x0, vve get

v ’ (Xo)*>P'Ax)=Èj r
Aay0 , A3y 0 
2h 3/i (4)

Using formula (4), Sec. 7.10, we approximate the dérivative for
x = x0 as

(y  \ ^  p '  ty \  A2J/0 | A3f/0 | /c \
(p (x0) ~ r n\<x ) - - li------ 2ÂT ‘ ~3/ï----- 5r + ’ -- W

Note that for a function having dérivatives, the différence Ay0 
is an infinitésimal of the first order, A2y0 is an infinitésimal of the 
second order, A3y0 is an infinitésimal of the third order, etc., re-
lative to h.

7.12 ON THE BEST APPROXIMATION 
OF FUNCTIONS By POLYNOMIALS. CHEBYSHEV’S THEORY

A natural question arises from what was discussed in Secs. 7.9 
and 7.10. If a continuous function <p(;t) is given on a closed in-
terval [a, b], can this function be represented approximately in 
the form of a polynomial P(x) to any preassigned degree of accu- 
racy? In other words, is it possible to choose a polynomial P(x) 
such that the absolute différence between <p(x) and P (x) at ail 
points of the interval [a. b] is less than any preassigned positive 
number e? The following theorem, which we give without proof, 
answers this question in the affirmative.*

Weierstrass’ Approximation Theorem. If a function qp (*) is con-
tinuous on a closed interval [a, b] , then for every e >  0 there exists 
a polynomial P(x) such that |cp(jt) — P ( x ) \ < e a t  ail points of the 
interval.

The Soviet'mathematician Academician S. N. Bernstein gave the 
following method for the direct construction of such polynomials 
that are approximately equal to the continuous function <p(x) on 
the given interval.

Let qp (jc) be continuous on the interval [0, 1]. We Write the 
expression

ven function at the point x = The expression Bn (jc) is annth 
degree polynomial called the Bernstein polynomial.

* It will be noted that the Lagrange interpolation formula fsee (3) Sec. 7.9] 
cannot yet answer this question. Its values are equal to those of the function 
at the points x0, xlf x2t . . . ,  xnt but they may be very far from the values of 
the function at other points of the interval [a, b\.

m= 0

Here, CJ are binomial coefficients, <p is the value of the gi-
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If an arbitrary e > 0  is given, one can choose a Bernstein po-
lynomial (that is, select its degree n) such that for ail values of x 
on the interval [0 , 1], the following inequality will hold:

|Æ„(*)—q>(*)| <"fc
It should be noted that considération of the interval [0 , 1], 

and not an arbitrary interval [a, 6], is not an essential restriction 
of generality, since by changing the variable x = a-\-t(b—a) it is 
possible to convert any interval [a, b] into [0, 1]. In this case, 
an nth degree polynomial will be transformed into a polynomial 
of the same degree.

The creator of the theory of best approximation of functions by 
polynomials is the Russian mathematician P. L. Chebyshev 
(1821-1894). In this field, he obtained the most profound results, 
which exerted a great influence on the work of later mathemati- 
cians. Studies involving the theory of articulated mechanisms, 
which are widely used in machines, served as the starting point 
of Chebyshev’s theory. While studying these mechanisms he arri- 
ved at the problem of finding, among ail polynomials of a given 
degree with leading coefficient unity, a polynomial of least dévia-
tion from zéro on the given interval. He found these polynomials, 
which subsequently became known as Chebyshev polynomials. They 
possess many remarkable properties and at présent are a powerful 
tool of investigation in many problems of mathematics and engi-
neering.

Exercises on Chapter 7

1. Find (3 +  50 (4  — i). Ans. 17+17/. 2 . Find (6 + 11/) (7 +  3/). Ans. 9 +  95/. 

3. Find . Ans. ^  —iyt. 4. Find (4 — 7/)3. Ans. — 524 +  7/. 5. Find Y T .

Ans. ±  . 6 -  — 5 — 12/. Ans. dh (2 — 3/). 7. Reduce the following

expressions to trigonométrie form: (a) 1 +  /. Ans. Y  2  ̂cos “£*+/ sin  ̂ , (b)

1 — /. Ans. Y~% ^ c o s -^ - + /s in  . 8 . Find \Y i .  Ans. , — /,

Z - Ô . 9. Express the following expressions in terms of powers of sin x and

cos*: sin 2x, cos 2*, sin 4x, cos 4x, sin 5x, cos 5*. 10. Express the following in 
terms of the sine and cosine of multiple arcs: cos2*, cos3*, cos4*, cos5*, 
cos6*; sin2 *, sin3*, sin4*, sin5*. 11. Divide f (*) =  *3 — 4* 2 +  8* — 1 by * +  4. 
Ans. /(* ) =  (* +  4) (*2 — 8* +  40)— 161, that is, the quotient is equal to * 2 — 
— 8* +  40; and the remainder is / ( —4) =  — 161. 12 . Divide / (*) =  *4 + 1 2 *3 +  
+ 54*2+  108*+81 by * + 3 .  Ans. /  (*) =  (* +  3) (*3 +  9* 2 +  27* +  27). 13. Divide 
/ (*) =  * 7 — 1 b y * — 1. Ans. /(* ) =  (*— 1) (*6 +  * 6 +  * 4 +  * 3 +  * 2 +  * +  1).

Factor the following polynomials into factors with real coefficients:
14. /(*) =  *4— 1. Ans. /(* ) =  (*— 1) (* +  1) (**+ 1). 15. /(* ) =  * 2 —* — 2 . Ans. 
/ ( * ) = ( * - 2 ) (* + l) .  16. /(*) =  *3+  1. Ans. /(*) =  (* +  l )(*2- * + l ) .

s
Прямоугольник

s
Прямоугольник




