LECTURE 14

COMPLEX NUMBERS. POLYNOMIALS

COMPLEX NUMBERS. BASIC DEFINITIONS

A complex number is a number given by the expression
z=a-+ib (1)

where a and b are real numbers and i is the so-called imaginary
unit, which is defined as

i =V —1 or i*=—1 (2)

a is called the real part, and b, the imaginary part of the comp-
lex number. They are designated, respectively, as follows:

a=Rez, b=Imz

If a=0, then the number 04 ib=ib is a pure imaginary; if
b=0, then we have the real number a+i0=a. Two complex
numbers z=a-+ib and z=a—ib that differ solely in the sign of
the imaginary part are called conjugate complex numbers.

We agree upon the two following basic definitions.

(1) Two complex numbers 2, -=a, 4 ib, and 2z, =a, 4 ib, are equal,

2, =25, lf
P a,=a, b, =b,

that is, if their real parts are equal and their imaginary parts are

equal.
(2) A complex number z is equal to zero

z2=a-+ib=0

if and only if a=0, b=0.

I. Geometric representation of complex numbers. Any complex
number z=a+ib may be represented in the xy-plane as a point
A (a, b) with coordinates a and b. Conversely, every point M (x, y)
of the plane is associated with a complex number z=x+iy. The
plane on which complex numbers are represented is called the
plane of the complex variable z, or the complex plane (Fig. 162,
the encircled z symbol indicates that this is the complex plane).

Points of the plane of the complex variable z lying on the
x-axis correspond to real numbers (b=0). Points lying on the
y-axis represent pure imaginary numbers, since a=0. Therefore,
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in the complex plane, the y-axis is called the imaginary axis, or
axis of imaginaries, and the x-axis is the real axis, or axis of
reals.

Joining the point A (a, b) to the origin,°we get a vectclr_m. In
certain instances, it is convenient to consider the vector OA as the
geometric representation of the complex
number z=a+ ib. yf ®  Afa,b)

2. Trigonometric form of a complex
number. Denote by ¢ and r (r = 0) the r b
polar coordinates of the point A (a, b)
and consider the origin as the pole and v >
the positive direction of the x-axis, the 0 a Z
polar axis. Then (Fig. 162) we have
the familiar relationships Fig. 162

a==rcos@, b=rsing

and, hence, the complex number may be given in the form

a+ib=rcosp-+irsing or z=r(cosq-+ising) (3)

The expression on the right is called the ¢{rigonometric form (or
polar form) of the complex number z=a-ib; r is termed the modulus
of the complex number 2z, ¢ is the argument (amplitude or phase)
of the complex number z. They are designated as

r=|z|, p=argz (4)
The quantities r and ¢ are expressed in terms of a and b as follows:

r=Va*+b® @=Arctan %

To summarize, then,

|z|=|a+ib|=Va*+0b?
()

arg z = arg (a + ib) = Arctan %

The amplitude of a complex number is considered positive if it
is reckoned from the positive x-axis counterclockwise, and negative,
in the opposite sense. The amplitude @ is obviously not determined
uniquely but up to term 2nk, where % is any integer.

Note. The conjugate complex numbers z=a+ib and z=a—ib
have equal moduli |z|=|z| and their arguments (amplitudes) are
equal in absolute value but differ in sign: argz= —arga.
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It will be noted that the real number A can also be written in
the form (3), namely:

A=|A|(cos0+isin0) for A >0
A=|A|(cosn+isinm) for A<O
The modulus of the complex number 0 is zero: |0]|=0. Any

angle ¢ may be taken for amplitude zero. Indeed, for any angle ¢
we have

0=0(cos@-ising)

BASIC OPERATIONS ON COMPLEX NUMBERS

1. Addition of complex numbers. The sum of two complex num-
bers 2, =a,+ib, and z,=a,+ib, is a complex number defined by
the equation

2, + 2, = (a, + ib,) + (a, 4 ib,) = (a, +a,) + i (b, + b,) (1)

From (1) it follows that the addition of complex numbers depic-
ted as vectors is performed by the rule of the addition of vectors
(Fig. 163a).

Fig. 163

2. Subtraction of complex numbers. The difference of two complex
numbers z,=a,+ib, and 2,=a,+ib, is a complex number such
that when it is added to 2, it yields z,.

It is easy to see that

2,—2,=(a,+ ibl) —(a, + ibz) =(a,—a,)+i (b1 _ba) (2)

It will be noted that the modulus of the difference of two complex
numbers is equal to the distance between the points representing
these numbers in the plane of the complex variable (Fig. 163b)

I 2,—2 | = V (al_as)z + (bl—'bz)z

3. Multiplication of complex numbers. The product of two com-
plex numbers 2,=a,+ib, and 2z,=a,+ib, is a complex number
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obtained when these two numbers are multiplied as binomials by
the rules of algebra, provided that

t=—1, *=—i, ‘=(—i)i=<i=1, ®=i, etc

and, generally, for any integral &,
(4 = 1’ [4k+1 — i j4k+2 — —l, jdk+3 —

From this rule we get
2,2,= (a, +ib,) (a, + ib,) = a,a, + ib,a, + ia,b, + i*b,b,
or
2,2, = (a,a,—b,b,) + i (b,a,+a,b,) (3)
Let the complex numbers be written in trigonometric form
2,=r,(cosq,+ising,), 2,=r,(cos,+ising,)
then
* 2,2,=r,(cosp,+ising,)r,(cos @, + ising,)
=r,r, [cos @, cos ¢, + i sin @, cos @, + i cos @, sin ¢,
+ {2 sin @, sin @,] = r,r, [(cos ¢, cos ¢, —sin @, sin @,)
+ i (sin @, cos @, + cos @, sin @,)]
=r,ry [cos (¢, + @,) + i sin (9, 4 @,)]
Thus,
2,2, =r,r, [cos (¢, + @,) +i sin (9, 4 ¢,)] (3")
i. e., the product of two complex numbers is a complex number, the
modulus of which is equal to the product of the moduli of the factors,

and the amplitude is equal to the sum of the amplitudes of the

factors.
Note 1. The product of two conjugate complex numbers z=a--ib

and z=a—ib is, by virtue of (3), expressed as follows:
2z =aq% 4 b?
or
zz=|z[t=|z*
The product of two conjugate complex numbers is equal to the
square of the modulus of each number.

4. Division of complex numbers. The division of complex num-
bers is defined as the inverse operation of multiplication.

Suppose we have z, =a,+ib,, 2z, =a,+ib,, |z,]=V a2+ b10.
Then -i—‘-=z is a complex number such that z, =2z.2. If

2
al+ib1 .
= X1
\ a’+lb2 + y

15*
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then
a,+ ibl = (@, + ibz) (x+iy)
a,+ib, = (azx_bzy) + i (ay + byx)
x and y are found from the system of equations
a,=a,x—by, b,=bx+ay

Solving this system we get

or

— a1a;+ biby _ azh, — a,b,
a3+b3 ' a3+ b3
and finally we have
ala2+b]b2 . agbl—albz
2= i 4
a3-+b3 + a3+ b3 )

Actually, complex numbers are divided as follows: to divide
z,=a,+ib, by z,=a,+ib,, multiply the dividend and divisor by
a complex number conjugate to the divisor (that is, by a,—ib,).
Then the divisor will be a real number; dividing the real and
imaginary parts of the dividend by it, we get the quotient

ay+iby — (ay+-iby) (as—iby) —

a;+iby (as+iby) (ay—iby)

_(@1a5+b1bo) +-i (agby —arby) _ 8103+ biby +i asb, —a, b,
a3+ b3 a3 +53 a2+ b3

If the complex numbers are given in the trigonometric form
2, =r,(cosq@,+ising,), 2,=r,(cos @, ising,)

then
A _ NSt SO _ 71 [eos (p,—@,) +isin (p,—@n)] ()

2, ry(cos @g+isinqy)

To verify this equation, multiply the divisor by the quotient:

ry (COs @, i sin @,) ':_: [COS (p—@,) +isin(g, —(pz)]
=T :_: [cos (@, + ¢, —p,) + i sin (9, -+, —@,)] =r,(cosp, +ising,)

Thus, the modulus of the quotient of two complex numbers is equal
to the quotient of the moduli of the dividend and the divisor; the
amplitude of the quotient is equal to the difference between the
amplitudes of the dividend and divisor.

Note 2. From the rules of operations involving complex num-
bers it follows that the operations of addition, subtraction, multi-
plication and division of complex numbers yield a complex number,
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If the rules of operations on complex numbers are applied to
real numbers, these being regarded as a special case of complex
numbers, they will coincide with the ordinary rules of arithmetic.

Note 3. Returning to the definitions of a sum, difference, pro-
duct and quotient of complex numbers, it is easy to show that if
each complex number in these expressions is replaced by its con-
jugate, then the results of the aforementioned operations will yield
conjugate numbers, whence, as a particular case, we have the
following theorem.

Theorem. /f in a polynomial with real coefficients

At EAxn-14 ...+ A,

we put, in place of x, the number a-ib and then the conjugate
number a—ib the results of these substitutions will be mutually
conjugate.

POWERS AND ROOTS OF COMPLEX NUMBERS

1. Powers. From formula (3’) of the preceding section it follows
that if n is a positive integer, then

[ (cos @ 4 i sin @)]® = r™ (cos ng 4 i sin ne) (1)

This formula is called De Moivre’s formula. 1t shows that when
a complex number is raised to a positive integral power the modulus
is raised to this power, and the amplitude is multiplied by the
exponent.

Now consider another application of De Moivre’s formula.

Setting r =1 in this formula, we get

(cos @ +ising)” =cosng +isinng

Expanding the left-hand side by the binomial theorem and
equating the real and imaginary parts, we can express sinng and
cosng in terms of powers of sing and cos¢. For instance, if
n=3 we have .

cos® @ +i 3cos? ¢ sin @ —3cos ¢ sin? @ —i sin® ¢ =cos 3¢ +-i sin 3¢
Making use of the condition of equality of two complex numbers,
we get

cos 3¢ = cos® ¢ — 3 cos ¢ sin? ¢
sin 3¢ = —sin3® ¢ + 3 cos? @ sin ¢

2. Roots. The nth root of a complex number is another complex
number whose nth power is equal to the radicand, or

v r (cos ¢ + i sin @) = p (cos P 4 i sin )

if :
P" (cos n + i sin nyp) = r (cos @ + i sin @)
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Since the moduli of equal complex numbers must be equal,
while their amplitudes may difier by a multiple of 2n, we have

pt=r, np=¢-42kn

n/— 2k
p=1/7, p=tE2"

Whence we find

where &k is any integer, V' r is the principal (positive real) root
of the positive number r. Therefore,

V/ r(cos p+ising)= /r(cos q>+ —}—tsmM) (2)

Giving k the values 0, 1, 2, ..., n—1, we get n different values
of the root. For the other values of %, the amplitudes will differ
from those obtained by a multiple of 2x, and, for this reason,
root values will be obtained that coincide with those considered.

Thus, the nth root of a complex number has n diffierent values.

The nth root of a real nonzero number A also has n values,
since a real number is a special case of a complex number and

v may be represented in trigonometric form:

8 if A>0, then A=|A|(cos0+4isin0)
if A<O, then A=|A]|(cosn+isinmx)
Example 1. Find all the values of the cube root of

T unity.
Solution. We represent unity in trigonometric form:

l=cos0+isin0

By formula (2) we have

Fig. 164 l/_ l/cosO+1sm 0= coso+2kn+isin0+32kn
Setting & equal to 0, 1, 2, we find three values of the root:
xy=cos 04isin0=1, x,=cos-21+isin-2§,
Xg = COS 3——+zsmi§-
Noting that
1 .21 V_B 4n 1 . 4n ]/—3
cos == —7, sin—F=—5—, Cos = —, SiN—F=——"5—
we get
V3 1 V3
=1 xp=—g+i—7—, H=—g—i—7—

In Fig. 164, the points A, B, C are geometric representations of the roots
obtained.
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3. Solution of a binomial equation. An equation of the form
x"=A

is called a binomial equation. Let us find .ts roots.
If A is a real positive number, then

X = ;/A( OS——}—lSlI‘lel) (k=0,1,2,...,n—1)

The expression in the brackets gives all the values of the nth
root of 1.
If A is a real negative number, then

x=VTA] ( cos “+n2kn + i sin n+n2k")

The expression in the brackets gives all the values of the nth
root of —1.

If A is a complex number, then the values of x are found from
formula (2).

Example 2. Solve the equation

xé=1
Solution.

x={‘/cos2kn+isin2kn=cos —|—151 ﬂeﬂ

Setting &k equal to 0, 1, 2, 3, we get

x;=c0804isin0=1

2n | . . 2n
x,=cosT—|—tsmT=t

x,,-cos4—-+ isin i}:—l
x4—cose——|—zsm %:-t-—_-—i

EXPONENTIAL FUNCTION WITH COMPLEX EXPONENT AND ITS
PROPERTIES

Let z=x+4iy. If x and y are real variables, then z is called
a complex variable. To each value of the complex variable z in the
xy-plane (the complex plane) there corresponds a definite point
(see Fig. 162).

Definition. 1f to every value of the complex variable z of a
certain range of complex values there corresponds a definite value
of another complex quantity w, then w is a function of the complex
variable z. Functions of a complex variable are denoted by w=f(2)
or w=w(2).
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Here, we consider the exponential function of a complex variable:

w=e*
or
w=e*+ty
The complex values of the function w are defined as follows *:
e*+i = e* (cos y + i sin y) (1)
that is
w (2) =€ (cos y+ i sin y) (2)

Examples:
n —
n, I+t n,..n\_ (V2 .V?2
1. Z=l—|—Tl, e _e(cosT+zsm-4—)_e( 5t 5 )

L3
n., 0+ L L TEUTE L W
2. 2=0+51, e =e (cos 5 —+ isin 3 )_1,

3. z=1+i, et+i=¢l(cos 14isin 1) ~ 0.544i-0.83.
4, z=x is a real number, e¥+%=¢%(cosO-isin0)=e¥ is an ordinary ex-

pbnential function.

Properties of an exponential function.
1. If 2z, and 2z, are two complex numbers, then

e%11+23 — p2:102s (3)

Proof. Let . .
2, =% 1Y, 2,=X,+1Y,

then

e21+2s — p(X1 +iy)+ (Xa+iys) — p(Xa+Xa)+1(y1+Ys)
=e*e™[cos (4, +y,) +isin(y, +y,)] (4)

On the other hand, by the theorem of the product of two complex
numbers in trigonometric form we will have

e1e7s = g1+ ivigta+iys = ¢*1 (cos y, - i sin y,) e*s (cos y, + i sin y,)
= e*1e* [cos (y, + ¥,) + i sin (414 ¥.)] (5)

In (4) and (5) the right sides are equal, hence the left sides are

equal too:
e21+2s — g21p2s

2. The following formula is similarly proved:

enmn =2 )

* The advisability of this definition of the exponential function of a complex
variable will also be shown later on (see Sec. 13.21 and Sec. 16.18 of Vol. II).


s
Прямоугольник


3. If m is an integer, then
(€5)™ =em* (7)

For m > 0, this formula is readily obtained from (3); if m <0,
then it is obtained from formulas (3) and (6).
4. The identity

ex+21 —g? (8)
holds.
Indeed, from (3) and (1) we get
€2+ 20 — gZp2nl — ¢ (cos 27 4 i sin 2w) =e*

From identity (8) it follows that the exponential function e* is a
periodic function with a period of 2mi.
5. Let us now consider the complex quaatity

w=u(x)4iv(x)

where u (x) and v(x) are real functions of a real variable x. This
is a complex function of a real variable.
(a) Let there exist the limits

lim u (x) = u (x,), lim v (x) =v (x,)

X+ Xy XXy

Then u (x,) + iv (x,) = w, is called the limif of the complex variable w.
(b) If the derivatives «’ (x) and v’ (x) exist, then we shall call
the expression

wy=u’ (x) +iv’ (x) )

the derivative of a complex function of a real variable with respect
to a real argument.
Let us now consider the following exponential function:

W —=e>*+iBx — platip)x

where o and P are real constants and x is a real variable. This
is a complex function of a real variable, which function may be
rewritten, according to (1), as follows:

w =e** [cos Px -+ i sin Bx]
or

w = e* cos Px -+ ie** sin fx

Let us find the derivative w,. From (9) we have
w;, = (e** cos Px)’ + i (¢** sin Px)’
= e** (a cos fpx —P sin Px) -- ie** (o sin fx + P cos Px)
= [e** (cos Bx + i sin Bx)] + iP [e** (cos Px + i sin Px)]
= (o +iP) [e** (cosPx+ i sin Px)] = (a + ip) e+ B*
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To summarize then, if w=e“*®* then w’ = (a4 if)e**®* or
[e(a+ip) x] G (a + lﬂ) elat i x (10)

Thus, if £ is a complex number (or, in the special case, a real
number) and x is a real number, then

(€*)" = ket (9)

We have thus obtained the ordinary formula for differentiating an
exponential function. Further,

() = [(*)]’ =k (e) = ke
and for arbitrary n

(ekx)(n) — knek*
We shall need these formulas later on.

EULER’S FORMULA.
THE EXPONENTIAL FORM OF A COMPLEX NUMBER

Putting x=0 in formula (1) of the preceding section, we get
e¥ =cosy+isiny (1)

This is Euler’s formula, which expresses an exponential function
with an imaginary exponent in terms of trigonometric functions.
Replacing y by —y in (1) we get

e~ =cosy—isiny . (2)
From (1) and (2) we find cosy and siny:

y -iy
ey —e-iy
2i

&)

siny =

These formulas are used in particular to express powers of cos g
and sing and their products in terms of the sine and cosine of
multiple arcs.

Example 1. cos?y (ely+e-ly ) ——l— (€' 42 J-e- )
7:— [(cos 2y + i sin 2y) + 2+ (cos 2y — i sin 2y)}
=T (2 cos 2y +2)=% (1 4 cos 2y)

elot-e=lz\2 e‘?-—-e-fcp)’
2 2i
ei2: — o= 12¢)2 | 1
= T )=—§cos4(p+§-

Example 2. cos? g sin? o= (
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The exponential form of a complex number. Let us represent a
complex number in trigonometric form:
z=r (cos ¢+ ising)
where r is the modulus of the complex number and ¢ is the ar-
gument (amplituce) of the complex number. By Euler’s formula,
COS @ -+ i sin ¢ = ¢'® (4)

Thus, any complex number may be represented in the so-called

exponential form:
z=re'v

Example 3. Represent the numbers 1, i, —2, —i in exponential form.
Solution. 1 = cos 2kn i sin 2kn = g2k

.
: L. e .
i=cos—+isin 5=e 2

—2=2 (cos i sin ;) = 2e™
n n -5
-—i=cos(——-—2—)+isin(—?)=e B

By Properties (3), (6), (7), Sec. 7.4, of an exponential function,
it is easy to operate on complex numbers in exponential form.
Suppose we have
2, =160, 2z,=r,e"

then
2,°2,=T,%1.1,6:P1 = rlrzei (P1+Py) (5)
iQ, '
A_NC " _ N i(p,-¢y)
e (6)
2" = (ref?)" = rreine (7)

@+ 2k

Vreh=re n (k=0,1,2 ..., n—1) 8)

Formula (5) coincides with (3) of Sec. 7.2; éﬁ), with (5) of
Sec. 7.2; (7), with (1) of Sec. 7.3; (8) with (2) of Sec. 7.3.

FACTORING A POLYNOMIAL

The function
[(X)=Ax"+Ax""14...+A,

where n is an integer, is known as a polynomial or a rational
integral function of x; the number n is called the degree of the
polynomial. Here, the coefficients A,, A,, ..., A, are real or
complex numbers; the independent variable x can also take on
both real and complex values. The roof of a polynomial is that
value of the variable x at which the polynomial becomes zero.
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Theorem 1 (Remainder Theorem). Division of a polynomial f(x)
by x—a yields a remainder equal to f(a).

Proof. The quotient obtained by the division of f(x) by x—a
is a polynomial f,(x) of degree one less than that of f(x), and
the remainder is a constant R. We can thus write

f()=(x—a)f,(x)+R (1)

This equation holds for all values of x different from a (division
by x—a when x=a is meaningless).

Now let x approach a. Then the limit of the left side of (1)
will equal f(a), and the limit of the right side will equal R.
Since the functions f(x) and (x—a)f,(x) + R are equal for all
x 5 a, their limits are likewise equal as x —a, that is, f(a)=R.

Corollary. If a is a root of tne polynomial, that is, if f(a)=0,
then x—a divides f (x) without remainder a.d, hence, f(x) is repre-
sented in the form of a product

f(x)=(x—a)f,(x)

where f,(x) is a polynomial.

Example 1. The polynomial f(x)=x3—6x%2+411x—6 becomes zero for x=1;
thus, f(1)=0, and so x—1 divides this polynomial without remainder:

x—6x2+411x—6=(x—1) (x2—5x+6)

Let us now consider equations in one unknown, x.

Any number (real or complex) which, when substituted into the
equation in place of x, converts the equation into an identity is
called a root of the equation.

5n I

Example 2. The numbers x1=% » Xg=—, Xg=—, ... are the roots of

the equation cos x=sin x.

If the equation is of the form P (x) =0, where P (x) is a poly-
nomial of degree n, it is called an algebraic equation of degree n.
From the definition it follows that the roots of an algebraic equa-
tion P (x)=0 are the same as are the roots of the polynomial P (x).

Quite naturally the question arises: Does every equation have
roots?

In the case of nonalgebraic equations, the answer is no: there are
nonalgebraic equations which do not have a single root, either real
or complex; for example, the equation e*=0. *

* Indeed, if the number x,=a-}ib were the root of this equation, we
would have the identity e#+%®—=0 or (by Euler's formula) e2 (cos b--isin b)=0.
But e2 cannot equal zero for any real value of a; neither is cos b+ isin b equal
to zero (because the modulus of this number is ¥ cos®b-sin2b=1 for any b).
Hence, the product e?(cosb--isinb) %0, i.e., e?+/ £ 0; but this means
that the equation e¥=0 has no roots.



s
Прямоугольник


But in the case of an algebraic equation the answer is yes. This
is given by the fundamental theorem of algebra.

Theorem 2 (Fundamental Theorem of Algebra). Every rational
integral function f(x) has at least one roob, real or complex.

The proof of this theorem is given in higher algebra. Here we

accept it without proof.
With the aid of the fundamental theorem of algebra it is easy

to prove the following theorem.

Theorem 3. Every polynomial of degree n may be factored into
n linear factors of the form x—a and a factor equal to the
coefficient of x".

Proof. Let f(x) be a polynomial of degree n:

f(x)=Ax"+Ax""1+...4+A,

By virtue of the fundamental theorem, this polynomial has at
least one root; we denote it by a,. Then, by a corollary of the
remainder theorem, we can write

f (x) = (x—al) f1 (x)

where f,(x) is a polynomial of degree n—1; f, (x) also has a root.
We designate it by a,. Then

f1 (x) = (x_az) fz (x)
where f,(x) is a polynomial of degree n—2. Similarly,
fz (x) = (x_aa) fa (x)

Continuing this process of factoring out linear factors, we arrive
at the relation

fu-l(x) = (x_an)fn

where f, is a polynomial of degree zero, i.e., some specified num-
ber. This number is obviously equal to the coefficient of x*; that
is, f,=A

On the basis of the equations obtained we can write
fx)= Ao (x—a,) (x—a,) ... (x—a,) (2)
From the expansion (2) it fiollows that the numbers a,, a,, ..., q,
are roots of the polynomial f(x), since upon the substitution x =a,,
X=a,, ..., x=a, the right side, and hence, the left, becomes zero.

Example 3. The polynomial f(x)=x%—6x3411x—6 becomes zero when
X= l, x=2, x=3

Therefore,
XB—6x2+llx—6=(x—1)(x—2)(x—3)
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No value x=a that is different from a,, a,, ..., a, can be a
root of the polynomial f(x), since no factor on the right side of
(2) vanishes when x=a. Whence the following proposition.

A polynomial of degree n cannot have more than n distinct roots.

But then the following theorem obtains.

Theorem 4. If the values of two polynomials of degree n, ¢, (x)
and @, (x), coincide for n+1 distinct values a,, a,, a,, ..., a, of
the argument x, then these polynomials are identical.

Proof. Denote the difference of the polynomials by f(x):

f(x)=g, (%) — @, (%)

It is given that f(x) is a polynomial of degree not higher than
n that becomes zero at the points a,, ..., a,. It can therefore be
represented in the form

f(x)=A4,(x—a,)) (x—ay) ... (x—a,)

But it is given that f(x) also vanishes at the point a,. Then f (a,) =0
and not a single one of the linear factors equals zero. For this
reason, A,=0 and then from (2) it follows that the polynomial
f (x) is identically equal to zero. Consequently, @, (x)—q,(x)=0

or @, ()=, (x). .
Theorem 5. If a polynomial

Px)y=Ax"+Ax"4...+A,_x+ A4,

is identically equal to zero, all its coefficients equal zero.
Proof. Let us write its factorization using formula (2):

Px)=Ax"+Ax"14... +A,_x+A4,=4A,(x—a)...(x—a,) (1)
If this polynomial is identically equal to zero, it is also equal to

zero for some value of x different from a,, ..., a,. But then none
of the bracketed values x—a,, ..., x—a, is equal to zero, and,
hence, A,=0.

Similarly it is proved that A, =0, A;,=0, and so forth.

Theorem 6. If ftwo polynomials are identically equal, the coeffi-
cients of one polynomial are equal to the corresponding coefficients
of the other.

This follows from the fact that the difference between the
polynomials is a polynomial identically equal to zero. Therefore,
from the preceding theorem all its coefficients are zeros.

Example 4. If the polynomial ax3-4bx®4cx+d is identically equal‘to the
polynomial x?—5x, then a=0, b=1, c=-—5, and d=0.

THE MULTIPLE ROOTS OF A POLYNOMIAL
If, in the factorization of a polynomial of degree n into linear

factors
f(x)=A,(x—a,) (x—a,) ... (x—a,) (1)
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certain linear factors turn out the same, they may be combined,
and then factorization of the polynomial will yield

[(x)=A,(x—a)k (x—a))h ... (x—a,)'m (1)
Here

Ri+ky+...+k,=n

In this case, the root a, is called a root of multiplicity k,, or a
k,-tuple root, a,, a root of multiplicity k&,, etc.

Example. The polynomial f(x)=x®—5x2-+18x—4 may be factored into the
following linear factors:

f(x)=(x—2) (x—2) (x—1)
This factorization may be written as follows:
f(x)=(x—2)* (x—1)
The root a; =2 is a double root, ag=1 is a simple root.

If a polynomial has a root a of multiplicity &2, then we will
consider that the polynomial has & coincident roots. Then from
the theorem of factorization of a polynomial into linear factors
we get the following theorem.

Every polynomial of degree n has exactly n roots (real or complex).

Note. All that has been said of the roots of the polynomial

f(X)=Ax"4+Ax""1+ ...+ A,
may obviously be formulated in terms of the roots of the algeb-
raic equation
Axt+Ax"-14 ...+ A4,=0

Let us now prove the following theorem.

Theorem. If, for the polynomial f(x), a, is a root of multiplicity
k,> 1, then for the derivative f'(x) this number is a root of
multiplicity k,—1.

Proof. If a, is a root of multiplicity 2, > 1, then it follows from

formula (1’) that
f(x)=(x—a,)" ¢ (x)

where @ (x) = (x—a,)* . .. (x—a,,)*= does not become zero at x =a,;
that is, ¢(a,)==0. Differentiating, we get
['(x) =k (x—a)h 1@ (x)+ (x—a,)* ¢’ (x)
= (x—al)k'—l [qu’ (x) + (‘x—al) (P’ (x)]

Put
P (x) =k (x)4 (x—a,) @’ (x)
Then
[ (x) = (x—a)"~ 19 (x)
and here

VY (a,) = k9 (a,)+ (a,—a,) ¢ (a,) =k,9(a,) 70
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In other words, x=a, is a root of multiplicity 2,—1 of the
polynomial f’(x). From the foregoing proof it follows that if £, =1,
then a, is not a root of the derivative ' (x).

From the proved theorem it follows that a, is a root of multi-
plicity #,—2 for the derivative f"(x), a root of multiplicity #,—3
for the derivative f"’"(x) ..., and a root of multiplicity one (simple
root) for the derivative f*-V(x) and is not a root for the deri-
vative f%(x), or

f@)=0, f(a)=0, {"(a)=0, ..., f#~V(a)=0

but
f® (a,) %0

FACTORING A POLYNOMIAL IN THE CASE
OF COMPLEX ROOTS

In formula (1), Sec. 7.7, the roots a,, a,, ..., a, may be either
real or complex. We have the following theorem.

Theorem. If a polynomial f (x) with real coefficients has a complex
root a-ib, it also has a conjugate root a—ib.

Proof. Substitute, in the polynomial f(x), a-ib in place of x,
raise to a power and collect separately terms containing i and
those not containing i; we then get

fa+ib)=M+iN,
where M and N are expressions that do not contain i.
Since a4 ib is a root of the polynomial, we have
fa+ib)=M+4iN =0
whence
M=0, N=0

Now substitute the expression a—ib for x in the polynomial.
Then (on the basis of Note 3 at the end of Sec. 7.2) we get the
conjugate of the number M+ iN, or

f(@a—ib)=M—iN
Since M=0 and N =0, we have f(a—ib)=0; a—ib is a root of

the polynomial.
Thus, in the factorization

f)=4,(x—a,) (x—a,) ... (x—ay)

the complex roots enter as conjugate pairs.
Multiplying together the linear factors that correspond to a
pair of complex conjugate roots, we get a trinomial of degree two
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with real coefficients:

[x—(a+ib)] [x—(a—ib)]
= [(x—a)—ib] [(x—a) 4+ ib]
=(x—a)l+bt=x*—2ax+a*+b0*=x*+{px+q
where p=—2a, g=a*+ b* are real numbers. |
If the number a--ib is a root of multiplicity %, the conjugate
number a—ib must be a root of the same multiplicity &, so that
factorization of the polynomial will yield the same number of
linear factors x—(a+ib) as those of the form x—(a—ib).
Thus, a polynomial with real coefficients may be factored into
factors with real coefficients of the first and second degree of cor-
responding multiplicity; that is,

f(x) = Ao (x_al)k' (x""a‘z)k’
oo (x—a )b (2 pix gt L (X2 px o+ gy)'s

Byd-byt ... k2 4 ... 42, =n

INTERPOLATION,
LAGRANGE’S INTERPOLATION FORMULA

Let it be established, in the study of some phenomenon, that
there is a functional relationship between the quantities y and x
which describes the quantitative aspect of the phenomenon; the
function y= ¢ (x) is unknown, but
experiment has established the va-
lues of this function y,, y,, ¥,, - - -,
y, for certain values of the argu-
ment x,, x,, X, ..., X, in the
interval (a, b].

The problem is to find a func-
tion (as simple as possible from
the computational standpoint; for
example, a polynomial) which will
represent the wunknown function .
y =@ (x) on the interval [a, b] either Fig. 165
exactly or approximately. In more
abstract fashion the problem may be formulated as follows: given
on the interval [a, ] the values of an unknown function
y=@(x) at n+ 1 distinct points x,, x,, ..., x,:

YH=0 (%), =0 (x), ..., Yn =9 (x,)
It is required to find a polynomial P (x) of degree <{n that
approximately expresses the function ¢ (x).

It is natural to take a polynomial whose values at the points
Xo» Xy, Xy ..., X, coincide with the corresponding values y,, y,,

where
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Ysy ---» Y, of the function ¢ (x) (Fig. 165). Then the problem,
which is called the “problem of interpolating a function”, is formulated
thus: for a given function ¢ (x) find a polynomial P (x) of degree
< n, which, for the given values of x,, x,, ..., x,, will take on
the values

=9 (%), =0 (%)), ) Yo=0(x,)
For the desired polynomial, take a polynomial of degree n of
the form
Px)=C,(x—x;)(x—x3) ... (x—x,)
+C1 (x_xo) (x_xz) oo (x—x,,)
+Cz (x_xo) (x—x1) (x—xs) e (x—x,,)

+ ... -{-—C,, (x_xo) (x_xl) cct (x_xn—l) (1)
and define the coefficients C,, C,, ..., C, so that the following
conditions are fulfilled:

P(x)) =Yy P(x)=y,, --., P(x,)=y, (2)
In (1) put x=x,; then, taking into account (2), we get

Yo=0C, (x,—x,) (Xg—X5) . . . (x,—x,)
whence

C — Yo

0 (xo—x1) (Xo—Xg) ... (Xo—Xp)
Then, setting x=ux,, we get

Y =C, (x,—X%,) (¥, —X%,;) - . . (¥,-—X,)

whence

Cl Y

T G —x0) (i—%a)- - (51— %)
In the same way we find

C. — Ya
27 (xg—xp) (X3 —X1) (Xg—X3). . .(Xg—Xp,)

ooooooooooooooo

(Xn—%0) (Xn—%1) (Xp—X3). . .(¥—Xp 1)
Substituting these values of the coefficients into (1), we get
P )= o) ey e e o

Tl
R E T e e e U

(X—xo) (x_xl)- . ~(x'—xn—l)

et (Xp—Xo) (x,,—xl)...(x,,—x,,_l)y” (3)
This formula is called Lagrange’s interpolation formula.
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Let it be noted, without proof, that if ¢ (x) has a derivative of
the (n+1)th order on the interval [a, b], the error resulting from
replacing the function ¢(x) by the polynomial P (x), i.e., the
quantity R (x) =¢ (x)— P (x), satisties the inequality

IR (9] < | (x—2) (x—1,). - (r—%,) | ey max | 9"+ ()|

Note. From Theorem 4, Sec. 7.6, it follows that the polynomial
P (x) which we found is the only one that satisfies the given
conditions.

There are other interpolation formulas, one of which (Newton’s)
is considered in Sec. 7.10.

Example. From experiment we get the values of the function y=¢ (x);
Yo=3 for xo=1, y;=—>5 for x;,=2, ys=4 for x3=—4. It is required to
represent the function y= @ (x) approximately by a polynomial of degree two.

Solution. From (3) we have (for n=2):

(=) (e 44), , (—1) (4

PO=tr— a9t e=hess
(x—1) (x—2)

tTEi—n =i

4

or
39 , 123 | 252

P(x)=—-3—0x —wx—fgﬁ

NEWTON’S INTERPOLATION FORMULA

Suppose we know (n+1) values of a function ¢ (x), namely
Yor Yi» ---» Y, for (n+1) values of the argument x,, x,, ..., x,.
The values of the argument are equally spaced. We denote th
constant difference of the arguments by h. This yields a table of
values of the unknown function y=¢(x) for respective values of
the argument.

X X Xxy=xy+h Xo=Xy+2h Xp=Xy+ nh

w.‘
Yy Yo Y1 Ya oue | Yn

Let us set up a polynomial of degree not greater than n that
takes on appropriate values for the corresponding values of x.
This polynomial will represent the function ¢ (x) in approximate
fashion.
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We introduce the following notation:
AYyy=—Yo» A =Yo—Y1» AYy=Y;—VY,, ...
Ay, =Y, — 24, + Y, = Ayl Ay,, A%, =Ay,—Ay, ...
Aayo =Y;—3Y,+ 3y, — Y, = A%, —A%,, ...
Anyo = A"-lyl—An—lyo

These are the so-called first, second, ..., nth differences.
We write down a polynomlal that takes on the values Yor Ui
for x, and x,, respectively. This is a polynomial of the first degree,

P, (x) =y, + Ay, =5 (1)
Indeed
h
Pl (x) |x=xo = Yo» Pl |X=xn =Y, + Ayo T Y, + (yl—yo) = Y,

Now write down the polynomial that takes 6n the values y,),
Y., Y. for x,, x,, x,, respectively. This is a polynomial of degree 2:

Ayox X

P (1) =y, + Ay, TR e IR (2R ) @

Indeed,

2|x-x°=y0' 2|x—xl_yl'

A2 2h h
Ix h_yo+Ay0 2+ yo (T—1>=y2
A polynomial of degree three will look like this:
x—X, Al yu X—Xo [ X—x
P (x) y0+Ayo “+ h 0( h 0___1)

A’y x—xy [ xX—x X—X
+ 0 h 0( z 0_1)( z 0__2) (3)
Finally, a polynomial of degree n taking on the values y,, y,,
Yy, - .-, Y, for the respective values x,, x,, x,, ..., x, will be of
the form
. —x Ay x—Xxo [ x—x
Py () =y gy SR S R (1)
Aryy x—xy [ x—X, xX—X
R L} °( - °—1) [ h“,—(n—l)] (4)

This can be seen at once by direct substitution. This is the Newton

interpolation formula (or the Newton interpolation polynomial).
Actually, the Lagrange polynomial and the Newton polynomial

are identical for the given table of values but are written diffe-
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rently, since a polynomial of degree not exceeding n and assuming
(n+1) values for (n+1) given values of x is found in unique
fashion.

In many cases, Newton’s interpolatjon polynomial is more
convenient than Lagrange’s interpolation polynomial. The peculi-
arity of this polynomial lies in the fact that when passing from
a polynomial of degree £ to one of degree 241 the first (24 1)
terms remain unchanged, and we add one new term, which for
all preceding values of the argument is zero.

Note. The Lagrange interpolation formula [see formula (3),
Sec. 7.9] and the Newton interpolation formula [see formula (4),
Sec. 7.10] are used to determine values of a function on the interval
X, < x<x, If these formulas are used to find values of the
function for x < x, (this can be done for small Jx—xo [), then we
say that the table is extrapolated backward. 1f the value of the
function is sought for x > x,, then we say that the table is extra-
polated forward.

NUMERICAL DIFFERENTIATION

Suppose the values of some unknown function ¢ (x) are given
in tabular form, say, by the table of Sec. 7.10. It is required to
approximate the derivative of the function. The problem is solved
by constructing the Lagrange (or Newton) interpolation polynomial
and then taking the derivative of that polynomial.

Since equally spaced tables of the argument are ordinarily
employed, we will make use of the Newton interpolation formula.
Suppose we have three values of the function, y,, y,, y,, for the
values x, x,, x, of the argument. Then write down polynomial
(2) of Sec. 7.10 and differentiate it to get the approximate value
of the derivative function on the interval x, <<x < x,,

’ ’ A A —
¥ (1)~ Py () =S (2555 ) (1)
For x=x, we have
’ ’ A A?
' (%) = Py (x,) ==2—=1 2)

If we consider a third-degree polynomial [see (3), Sec. 7.10],
then differentiation yields the following expression for the derivative:

2 —_
¥ (x) ~ Py(x) = e S (92251 )

+5a [3(552) -6 (552) +2] @
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In particular, for x=x,, we get
A A? A3
¢ (%) = P (x) = =2 S S 4)

Using formula (4), Sec. 7.10, we approxlmate the derivative for
X=X, as

A A2 A3 Al

( o) ~P ()C) !/o y0+ !/o y0+ (5)

Note that for a function havmg denvatlves, the difference Ay,

is an infinitesimal of the first order, A%y, is an infinitesimal of the

second order, A%y, is an infinitesimal of the third order, etc., re-
lative to hA.

ON THE BEST APPROXIMATION
OF FUNCTIONS BY POLYNOMIALS. CHEBYSHEV’S THEORY

A natural question arises from what was discussed in Secs. 7.9
and 7.10. If a continuous function ¢ (x) is given on a closed in-
terval [a, b], can this function be represented approximately in
the form of a polynomial P(x) to any preassigned degree of accu-
racy? In other words, is it possible to choose a polynomial P (x)
such that the absolute difference between @(x) and P (x) at all
points of the interval [a. b] is less than any preassigned positive
number e? The following theorem, which we give without proof,
answers this question in the affirmative.*

Weierstrass’ Approximation Theorem. /f a function @ (x) is con-
tinuous on a closed interval [a, b], then for every € > 0 there exists
a polynomial P (x) such that |@ (x)—P (x)| < e at all points of the
interval.

The Soviet mathematician Academician S. N. Bernstein gave the
following method for the direct construction of such polynomials
that are approximately equal to the continuous function ¢ (x) on
the given interval.

Let @ (x) be continuous on the interval [0, 1]. We write the
expression

B, (x)= L(p( >me'n(1 —x)n-m
Here, C? are binomial coefficients, cp(%) is the value of the gi-

ven function at the point x=%. The expression B, (x) is an nth
degree polynomial called the Bernstein polynomial.

* It will be noted that the Lagrange interpolation formula [see (3) Sec. 7.9]
cannot yet answer this question. Its values are equal to those of the function
at the points xo, x;, Xs, ..., x,, but they may be very far from the values of
the function at other points of the interval [a, b].
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If an arbitrary e >0 is given, one can choose a Bernstein po-
lynomial (that is, select its degree n) such that for all values of x
on the interval [0, 1], the following inequality will hold:

| B, (x) — @ (x) | <%

It should be noted that consideration of the interval [0, 1],
and not an arbitrary interval [a, b], is not an essential restriction
of generality, since by changing the variable x=a+ ¢ (b—a) it is
possible to convert any interval [a, b] into [0, 1]. In this case,
an nth degree polynomial will be transformed into a polynomial
of the same degree.

The creator of the theory of best approximation of functions by
polynomials is the Russian mathematician P. L. Chebyshev
(1821-1894). In this field, he obtained the most profound results,
which exerted a great influence on the work of later mathemati-
cians. Studies involving the theory of articulated mechanisms,
which are widely used in machines, served as the starting point
of Chebyshev's theory. While studying these mechanisms he arri-
ved at the problem of finding, among all polynomials of a given
degree with leading coefficient unity, a polynomial of least devia-
tion from zero on the given interval. He found these polynomials,
which subsequently became known as Chebyshev polynomials. They
possess many remarkable properties and at present are a powerful
tool of investigation in many problems of mathematics and engi-
neering.
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