
THE CURVATURE OF A CURVE

6.1 ARC LENGTH AND 1TS DERIVATIVE

Let the arc of a curve M0M (Fig. 137) Le the graph of a func- 
tion y = f(x) defined on an interval (a, b). Let us détermine the 
arc length of the curve. On the curve M0M take the points Af0,
Mu M2.........M,_lt Mit . . . .  Mn_u M. Connecting the points we
get a broken line M0M1M2. . .. M„_tM inscribed in the

arc Af0Af. Dénoté the length of this bro-
ken line by P„.

The length of the arc M0M is the 
li-mit (we dénoté it by s) approached by 
the length of the broken line as the lar- 
gest of the lengths of the segments of 
the broken line approaches zéro,
if this limit exists and is independent 
of any choice of points of the broken 
line M0MtM2. M,. ..M n. xM.

It will be noted that this définition 
of the arc length of an arbitrary curve is similar to the défini-
tion of the length of the circumference of a circle.

In Ch. 12 it will be proved that if a function f(x) and its 
dérivative f  (x) are continuous on an interval [a, b], then the arc 
of the curve y = f(x) lying between the points [a, f (a)] and 
[b, f(b)] has a definite length; a method will be shown for com-
puting this length. It will also be established (as a corollary) 
that under the given conditions the ratio of the length of any 
arc of this curve to the length of its chord approaches unity 
when the length of the chord approaches zéro, that is,

Iim length MJÙ  ) 

m 0m -+o length M0M

This theorem may be readily proved for the circumference* of

* Consider the arc AB , the central angle of which is 2a (Fig. 138). The
length of this arc is 2Ra (R is the radius of the circle), and the length of its

chord is 2/? s in a . Therefore, lim !îîîS1ÎL4£= lim — = 1 .
a -*0 length AB a - 0  2/? sm a
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6.1 Arc Lenglh and Ils Dérivative 201

a circle.- however, in the general case we shall accept it without 
proof (Fig. 138).

Let us consider the following question.
On a plane we hâve a curve given by*the équation

y =  f(x)-
Let M0 (x0, yv) be some fixed point of the curve and M (x, y), 

some variable point of the curve. Dénoté by s the arc length 
M0M (Fig. 139).

The arc length s will vary with changes in the abscissa x of 
the point M\ in other words, s is a function of x. Find the déri-
vative of s with respect to x.

Increase x by Ax. Then the arc s will change by As =  the 
length of AfAf,. Let AfAf, be the chord subtending this arc. In 
order to find lim -£■ do as follows: from AAfAf,Q find

AX-.0  Ax

ÂfÂf2 =  (Ax)2 -f- (AyY 

Multiply and divide the left-hand side by As2:

( - ^T1) 2 As2 =  (A*)2 +  (Aÿ)2 

Divide ail terms of the équation by Ax2:

m n È  y - i + f i f ) ’

Find the limits of the left and right sides as Ax—<-0. Taking into

account that lim 1 and that lim j -  = ̂ r , we get-----  A s  A v n Ajc ax °
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202 Ch. 6. The Curvature of a Curve

£ - / ' + ( & ) '  o )

For the differential of the arc we get the following expression:

* -  / P)
or *

ds =  V  dx2 +  dy2 (2')

We hâve obtained an expression for the differential of arc length 
for the case when the curve is given by the équation y = f(x). 
However, (2') holds also for the case when the curve is represen- 
ted by parametric équations.

If the curve is represented parametrically,

x — <p (t), y =  t ( 0
then

dx — <f'(t)dt, dy = ‘ty'(t)dt 

and expression (2') takes the form

ds = V [<p' (/)]•+[* '(/)]*  dt

6.2 CURVATURE

One of the éléments that characterize the shape of a curve is 
the degree of its bentness, or curvature.

Let there be a curve that does not intersect itself and has a 
definite tangent at each point. Draw tangents to the curve at any 
two points A and B and dénoté the angle formed by these tan-
gents by a [or, more precisely, the angle through which the tan-
gent turns from A to B (Fig. 140)]. This angle is called the 
angle of contingence of the arc AB. Of two arcs of the same 
length, that arc is more curved which has a greater angle of 
contingence (Figs. 140 and 141).

On the other hand, when considering arcs of different length we 
cannot gauge the degree of their curvature solely by the appro- 
priate angles of contingence. Whence it follows that a complété 
description of the curvature of a curve is given by, the ratio of 
the angle of contingence to the length of the corresponding arc.

* Strictly speaking, (2 ') holds only for the case when dx >  0. But if 
dx < 0, then ds= — y rdx2-\-dy2. For this reason, in the general case this for-
mula is more correctly written as |d s |=  ÿ d x 2-\-dy2.
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6.2 Curvalure 203

Définition 1. The average curvature Kav of an arc AB is the 
ratio of the corresponding angle of contingence a  to the length of 
the arc:

For one and the same curve, the average curvature of its diffe-
rent parts (arcs) may be different; for example, for the curve

shown in Fig. 142, the average curvature of the arc AB is not 
equal to the average curvature of the arc A 1B1, although the 
lengths of their arcs are the same.
What is more, at different points the 
curvature of the curve differs. To cha- 
racterize the degree of curvature of a 
given line in the immédiate neighbour- 
hood of a given point A, we introduce 
the concept of curvature of a curve at 
a given point.

Définition 2. The curvature K  a of a 
line at a given point A is the limit of 
the average curvature of the arc AB when the length of the arc 
approaches* zéro (that is, when the point B approaches the 
point A):

KA =  Iim Kav
B  -* A

lim
A B - > 0

a

J l E
Example. For a circle of radius r : ( 1) détermine the average curvature of 

the arc AB subtending the central angle a  (Fig. 143); (2) détermine the cur-
vature at the point A.

* We assume that the magnitude of the limit does not dépend on which 
side of the point A we take the variable point B on the curve.
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204 Ch. 6. The Curuature of a Curve

Solution. (1) Obviously the angle of contingence 
of the arc ÂÈ is a , the length of the arc is ar. Hence,

K a v = Z ar

or

Kav=jr

(2) The curvature at the point A is 

K= Un. — =  —
a -* 0 ar r

Thus, the average curvature of the arc of a circle of radius r is indepen- 
dent of the length and position of the arc, and for ail arcs it is equal

to . Likewise, the curvature of a circle at any point is independent of the

choice of this point and is equal to .

Note. It will be seen later that, generally speaking, for any 
curve the curvature at its various points differs.

6.3 CALCULATION OF CURVATURE

Let us develop a formula for finding the curvature of any 
curve at any point M (x , y). We shall assume that the curve is 
represented in a Cartesian coor- 
dinate System by an équation of 
the form

y =  f(*) (i)
and that the function / (x) has a 
continuous second dérivative.

Draw tangents to the curve at 
the points M and Afj with abscis- 
sas x and x +  Ax and dénoté by qp 
and qp +  Aqp the angles of inclina-
tion of these tangents (Fig. 144).

We reckon the length of the 
arc M0M from some fixed point 
M0 and dénoté it by s; then As =  M^Mx — and | As J =

As will be seen from Fig. 144, the angle of contingence corres- 
ponding to the arc AfAft is equal to the absolute value * of the 
différence of the angles œ and œ-FAœ, which means it is equal 
to | A<p |.

* It is obvious that for the curve given in Fig. 144, |Aqp| =  A<p since 
A<p > 0.
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6.3 Calculation of Curvature 205

According to the définition of average curvature of a curve, on 
the segment MM 1 we hâve

K  _  l*q>| _ |A (pf
| A s | | As |

To obtain the curvature at the point Af, it is necessary to find 
the limit of the expression obtained on the condition that the 
arc length MA,lx approaches zéro:

K =  lim
As-»- 0

dip
As

Since the quantities <p and s both dépend on x (are functions 
of x), <p may thus be considered as a function of s. We may con- 
sider that this function is represented parametrically by means 
of the parameter x. Then

lim ^r==~r-
A s - 0  As d s

and, consequently.

To calculate ^ , we make use of the formula for differentiat-
ds

ing a function represented parametrically:
dq>

dtp_ dx
ds ds

Tx

To express the d é r iv a t i v e in  terms of the function y = f(x )9 we 

note that tantp =  ^  and, therefore,

cp =  arctan^-

Differentiat ing this équation with respect to x , we get
d2y

dtp_ dx2

As for the dérivative we found in Sec. 6.1 that
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206 Ch. 6. The Curvature of a Curve

Therefore,

dip
d y   dx
ds ds

~dx

&y_
dx2

1 + (& Y
' \ d x ) _____________ dx2

or, since K —
dtp
ds

, we finally get

1 tPy
| dx2

{ /  Wii \ 2 13/.

K ï )‘]
(3)

It is thus possible to find the curvature at any point of a curve
2̂ y

where a second dérivative exists and is continuous. Calcula-
tions are done with formula (3). It should be noted that when 
calculating the curvature of a curve only the positive value of 
the root in the denominator should be taken, since the curvature 
of a line cannot (by définition) be négative.

Example 1. Détermine the curvature of the parabola y2 =  2px:
(a) at an arbitrary point M (x, y);
(b) at the point Afx (0 , 0 );

\c) at the point Af2 , p^ .

Solution. Find the first and second dérivatives of the function y =  Y  2px: 

dy _  p d2y _  p2 

dx Yïp~* ’ dx* (2px)"'*

Substituting the expressions obtained into (3), we get

(a) K =
(2p x +  p2)7*

(b)
* î = ! - 7

(C) K

2
y=p

1
2 VTp

Example 2. Détermine the curvature of the straight line y =  a x + b  at ar 
arbitrary point (x, y).

Solution.
y ' = a t y" =  0

Referring to (3) we get
K = 0

Thus, a straight line is a “line of zéro curvature”. This very same resuit is 
readily obtainable directly from the définition of curvature.
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6.4 Curvature of a Curve Represented Parametrically 207

6.4 CALCULATING THE CURVATURE 
OF A CURVE REPRESENTED PARAMETRICALLY

Let a curve be represented parametrically:

* =  ¥ (0 . 0 =  *(O

Then (see Sec. 3.24): 
dy 
dx

V  <0
9' (0  ’

cPy_ilAp' —
dx2 (<p' ) 3

Substituting the expressions obtained into formula (3) of the 
preceding section, we get

Kp-'+^v* ( )

Example. Détermine the curvature of the cycloid

x =  a ( t — sin t). y  =  a (1 — cos t)

at an arbitrary point (x y).
Solution.

— = a ( l - c o s / ) ,  J = « s i n l ,  ^ = a s m t ,  cos /

Substituting the expressions obtained into (3). we get

_  | a (1 — cos t) a cos t —a sin t-a  sin 1 1 _ | cos t — 1 |

[a2 (1 — cos t)2-\-a2 sin2 t \ ft 2^fa (1 — cos t)*/*
_ ________ 1_______ __  1

" 2 ^ ( 1 - c o s ()‘/ . “ 4 l sj / I

6.5 CALCULATING THE CURVATURE OF A CURVE GIVEN 
BY AN EQUATION IN POLAR COORDINATES

Given a curve represented by an équation of the form

P =  /(©) (1)

Write the transformation formulas from polar coordinates to 
Cartesian coordinates:

x =  pcos0 |
ÿ =  psin0 ) ^

If in these formulas we replace p by its expression in terms 
of 0, i.e., /(0), we get

x — f  (0) cos 0  ̂
y = f(Q) sin0 j (3)
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208 Ch. 6. The Curvature of a Curve

The latter équations may be regarded as parametric équations 
of curve (1), the parameter being 0.

Then

55 =  S'cos0-psin0> S =  W sin0 +  pcos0
cPx d p cos0 — 24s-sin0—pcos0de* de* " de 

ïi¥  =  S -  sin0+ 2 tbt cos 0—p sin 0de

Substituting the latter expressions into (1) of the preceding 
section, we get a formula for calculating the curvature of a curve

in polar coordinates:

K==  lp* +  2 p'*— pp

(p» +  p'*)V
(4)

Example. Détermine the cur-
vature of the spiral of Archime- 
des p = a 0 (a > 0 ) at an arbitra- 
ry point (Fig. 145).

Solution.

^ = a ,  4 £ = 0

Fig. 145

de ■’ de2
Hence 

| a202 + 2a2 | _  1 02 + 2
( a * e * + a * ) V l  a (0 * + l ) 7*

It will be noted that for large values of 0 we hâve the approximate équa-

tions  ̂ ~  1, ^ I; therefore, replacing 02 +  2 by 02 and 02-f  l by

0 * in the foregoing formula, we get an approximate formula (for large values of 0):

i e2 î
A ^ -----------r r = “ Sa (02)Vt Û0

Thus, for large values of 0 the spiral of Archimedes has, approximately, 
the same curvature as a circle of radius a%.

6.6 THE RADIUS AND CIRCLE OF CURVATURE.
THE CENTRE OF CURVATURE.  EVOLUTE AND INVOLUTE

Définition. The quantity /?, which is the reciprocal of the cur-
vature K of a curve at a given point M, is called the radius of 
curvature of the curve at the point in question:

(O
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6 .6  The Radius and Circle of Curvature 209

or

Draw a normal, at the point A4, to a curve in the direction of 
the concavity of the curve, and lay off a segment A4C equal to 
the radius R of the curvature of the curve at the point M. The

Fig. 147

point C is called the centre of curvature of the given curve at M; 
the circle, of radius R, with centre at C (passing through M) is 
called the circle of curvature of the given curve at the point M 
(Fig. 146).

From the définition of circle of curvature it follows that at a 
given point the curvature of a curve and the curvature of a circle 
of curvature are the same.

Let us dérivé formulas defining the coordinates of the centre of 
curvature.

Let a curve be given by the équation

9 = f(x) (3)

Take a point M(x, y) on this curve and détermine the coordi-
nates a and P of the centre of curvature corresponding to this 
point (Fig. 147). To do this, write the équation of the normal to 
the curve at M:

Y - y ^ - - L ( X - x )  (4)

(Here, X  and Y are the moving coordinates of the point of the 
normal.)

Since the point C(a, P) lies on the normal, its coordinates 
must satisfy équation (4):

P—y =  — ÿ -(<*— x) (5)
14—2081
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210 Ch. 6. The Curvature of a Curve

Further, the point C(a, P) is separated from M(x, y) by a 
distance equal to the radius of curvature R:

(®—XY +  (P— y)2 =  R* (6)

Solving équations (5) and (6) simultaneously, we find a and p:

(a —x)2+ 4 i ( a —x)2 = R2
y

whence

(a—x)2 =  ——- R2 
v 1 + /*

a  =  x ± •fl, P =  0=F
/ 1 + / 1

and since (1 + y,Y  
1/1 ’

it follows that

a =  * ± liTI ’ P -ÿ = F 1 F/*
l / l

In order to décidé which signs (upper or lower) to take in the 
latter formulas, we must examine the case y" > 0  and the case 
y" <  0. If y" >  0, then at this point the curve is concave, and, 
hence, P >  y (Fig. 147), and for this reason we take the lower 
signs. Taking into account that in this case \ y"\ = y", the formulas 
of the coordinates of the centre of curvature will be

a = x

P = y

y '(!+»'*)

1 +y'*
(7)

Similarly, it may be shown that formulas (7) will hold for the 
case y"< 0  as well.

If the curve is represented by the parametric équations

* =  <P ( 0 .  âf =  +  ( 0

then the coordinates of the centre of curvature are readily obtain- 
able from (7) by substituting, in place of y' and y", their expres-
sions in terms of the parameter

Then

y =
xtyi—xi yt 

x?

y' (x't +  y ,i) 
x'y"—x“y'

P =  y
, x'(x'* +  y'2) 
' x'y"—x“y ‘

( T )
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6.6 The Radius and Circle of Curvature 211

Example 1. To détermine the coordinates of the centre of curvature of the 
parabola

y2 =  2px

(a) at an arbitrary point M (x , y), (b) at the «point M0 (0 , 0 ), (c) at the 

point Mi ( - J  ,

Solution. Substituting the values ^  and into (7) we get (Fig. 148):

(a) a  =  3* +  p, P = — ^ 7 7 =  >
y  p

(b) at a t = 0  we find a  =  p, P =  0 ,

(c) at X = 'Y we *iave a = ~£ • P = — P-

If at Ml (x, y) of a given curve the curvature differs from zéro, 
then a very definite centre of curvature Cl (a, p) corresponds to 
this point. The totality of ail centres of curvature of the given 
curve forms a certain new line, called the 
evolute, with respect to the first.

Thus, the locus of centres of curvature 
of a given curve is called the evolute. As 
related to its evolute, the given curve is 
called the évoluent or involute.

If a given curve is defined by the équation 
y = f(x), then équations (7) may be regarded 
as the parametric équations of the evolute 
with parameter x. Eliminating from these 
équations the parameter x (if this is possib-
le), we get an immédiate relationship bet- 
ween the moving coordinates of the evolute 
a  and p. But if the curve is given by pa-
rametric équations * =  <p (t), y = ty(t), then équations (7') yield 
the parametric équations of the evolute (since the quantifies x, 
y , x ', y', x", y" are functions of t).

Example 2 . Find the équation of the evolute of the parabola

y2 - 2px

Solution. On the basis of Example 1 we hâve, for any .point (x, y) of the 
parabola,

a  =  3 Jc+p

p (2x)V»

Eliminating the parameter x from these équations, we get

This is the équation of a semicubical parabola (Fig. 149).
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211 Ch. 6. The Curvature of a Curvê

Similarly we get

Example 3. Find the équation of the evo- 
lute of an ellipse represented by the parametric 
équations

x  =  a c o s t ,  y  =  b s \n t

Solution. Find the dérivatives of x  and y  

with respect to t:

x '  = —  f l s in/ ,  y '  =  b c o s t  
x "  =  — a cos / ,  y n  — — b s i n t

Substituting the expressions of the dérivatives 
into (7'), we get

a  =  a  cos t

b  cos t  (ia 8 sin2 / +  b 2  cos2 t )  

a b  sin2 t - \ - a b  cos2 t

=  a  cos t — a  cos t  sin2 / —
b2

cos3 t  =

- (
a

b2 \ 3 .
—  cos3 1
a J

cos8 1 

sin3 t

Eliminating the parameter t, we get the équation of the evolute of the ellipse 
in the form

Here, a  and P are the coordinates of the 
evolute (Fig. 150).

Example 4. Find the parametric équa-
tions of the evolute of the cycloid

x  =  a  ( t  — sin t )  

y — a  ( 1  — cos t )

Solution.

x ' = a ( l  — cos /), y ' = a s i n t  

x* =  as i nf ,  ^  =  acos^

Substituting the expressions obtained into
(7')t we get Fig. 150

a = a  (/ +  sin t )

P =  — a (l — cos t )

Make a change of variables, putting
a  =  £—na 
P =  r j  — 2  a  

t  =  t — J l
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6.7 The Properties of an Evolute 213

Then the équations of the evolute will take the form

\  =  a  ( t  —  s i n  t )

T] =  fl (1 —  COS T) #

They define, in coordinates Ç, t |,  a cycloid with the same generating circle of 
radius a. Thus, the evolute of a cycloid is that same cycloid displaced along 
the *-axis by — jia and along the y-axis by —2a (Fig. 151).

6.7 THE PROPERTIES OF AN EVOLUTE

Theorem 1. The normal to a given curve is a tangent to its evolute. 
Proof. The slope of the tangent to an evolute defined by the 

parametric équations (7) of the preceding section is equal to

dp
dp_ dx
da ~~ da  

dx

Noting that [by virtue of the same équations (7)]
da _  3y * y ' t — y ' y " ' ~ y ' ty " ' . . , 3 — —
dx y-t -  y y.t u ;

dp _  Zy^y' — y ' "—
dX ~~ y"* [ }

we get the relationship
dp  __1_
da y'

But y' is the slope of the tangent to the curve at the correspond- 
ing point; it therefore follows from the relationship obtained 
that the tangent to the curve and the tangent to its evolute at 
the corresponding point are mutually perpendicular; that is, the 
normal to a curve is the tangent to the evolute.
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214 Ch. 6. The Curvature of a Curve

Theorem 2. I f , over a certain segment M 1M2 of a curve, the 
radius of curvature varies monotonically (i.e.t either only increases 
or only decreases), then the incrément in the arc length of the evo- 
lute on this portion of the curve is equal (in absolute value) to 
the corresponding incrément in the radius of curvature of the given 
curve.

Proof. From formula (2'), Sec. 6.1, \ve hâve
ds2 = da2 +  dp2

where ds is the differential of arc length of the evolute; whence

Substituting the expressions (1) and (2), we get 

Then we find J*. Since R ■■ (i +y'i)Vr , it follows that

(3)

(i+y")3
y  y"‘

Differentiating both sides of this équation with respect to x, we 
get the following (after appropriate manipulations):

« n d R _  2(1 + ÿ " ) 2 (3y ' y " ' - y '" - y ' * y " ' )
K  dx -  ( y y

2n J- j/'2)8/2
Dividing both sides of the équation by 2R =  — , we hâve

y

dR ( l + y ' 1)l /2 (3y'y"‘— y '” — y''>y '” ) 
dx »

Squaring, we get

) •

Comparing (3) and (4), we find

( £ ) • - ( £ ) ■

whence
d _ R _ d ±  
dx ~  ^  dx

(4)

dRIt is given that does not change sign (R only increases or
dsonly decreases); hence, ^  does not change sign either. For the
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6.7 The Properiies of an Evolute 215

dR dssake of definiteness, let ^ < 0 ,  ^ . ^ 0  (which corresponds to

Fig. 152). Hence. § — £ .
Let the point hâve abscissa and lft2 hâve abscissa x2. Apply 

the Cauchy theorem to the functions s(x) and R(x) on the inter-
val [xlt x2]:

( - )s(x 2 ) — s  ( J C , )  \ e tx jx=l  .
/?(**)-/?(*,) /dR_\ ~

[ dx ) x=i

where |  is a number lying hetween x, and x2 (xt < Ê < * 2).
We introduce the désignations (Fig. 152)

^ C^2) ~  ^2» ^ (*^i)=  ^i» R  (*̂ 2) ”  R $* R  (*^i) ”  R i

Then =  — 1 or s2 — si = — (R2 — R l). But this means that

| s2 Sj | =  | R2 R 2 |

This équation is proved in exactly the same manner if the radius 
of curvature increases.

We hâve proved Theorems 1 and 2 for the case where the cutve 
is given by an explicit function, y — f(x).

If the curve is represented by parametric équations, these theo-
rems also hold, and their proof is exactly the same.

Note. The following is a simple mechanical methodforconstructing 
an involute from its evolute.
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216 Ch. 6. The Curvature of a Curve

Let a flexible ruler be bent into the shapc of an evolute C„C5 
(Fig. 153). Suppose one end of an unstretchable string is attached 
to the point C0 and bends round the ruler. If we hold the string 
taut and unwind it, the end of the string will describe a curve M5Af0,

which is the involute (or evolvent, 
the name coming from this pro- 
cess of “evolving”). Proof that this 
curve is indeed an involute may 
be carried out by means of the 
above-established properties of the 
evolute.

It should be noted that to a 
► single evolute there correspond 
x  an infinitude of various involutes 

(Fig. 153).

Example. Suppose we hâve a circle of 
radius a (Fig. 154). Take the involute of 
this circle that passes through the point 
Af0 (a, 0). ^

Taking into account that CM -=CM0=  
=  a t9 it is easy to obtain the équations of the involute of the circle:

OP — x =  a (cos t + 1 sin /)
PM =-y =  a(s\n t — t cos /)

lt will be noted that the profile of a tooth of a gear wheel is most often 
in the shape of the involute of a circle.

6.8 APPROXIMATIF THE REAL ROOTS OF AN EQUATION

Methods of investigating the behaviour of functions enable us to 
approximate the roots of an équation:

/<*) =  o

If the équation is an algebraic équation* of the first, second, 
third, or fourth degree, there are formulas which permit expressing 
the roots of the équation in terms of its coefficients by means of 
a finite number of operations of addition, subtraction, multiplica-
tion, division and évolution. Generally speaking, there are no such 
formulas for équations above the fourth degree. If the coefficients 
of any équation, algebraic or nonalgebraic (transcendental), are not 
literal but numerical, then the roots of the équation may be cal- 
culated approximately toany degree of accuracy. It should be noted 
that even when the roots of an algebraic équation are expressed

* The équation f(x) — 0 is calied algebraic if f (x) is a polynomial (see 
Sec. 7.6).
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6.8 Approximatif  the Real Roots of an Equation 217

in terms of radiCals, it is sometimes better to apply an approxi-
mation method of solving the équation. Below we give some me- 
thods of approximating the roots of an équation.

1. Method of chords. Given an equatioh

/(*) =  0 (1) 
where f(x) is a continuous, doubly différentiable function on the 
interval [a, b], Suppose that by investigating the function y = f{x) 
within the interval [a, b] we isolate a subinterval [x„ x2] such that 
within this subinterval the func-
tion is monotonie (either increas- 
ing or decreasing), and at the end 
points the values of the func-

Fig. 155 Fig. 156

tion f  (xt) and f (xt) hâve different signs. For definiteness, we say 
that f ( x1) < 0 ,  /  (•*■*) >  0 (Fig. 155). Since the function y = f(x) 
is continuous on the interval [x,, x2], its graph will eut the x-axis 
in some one point between xt and x2.

Draw a chord AB  connecting the end points of the curve 
y — f(x), which correspond to abscissas x1 and x%. Then the 
abscissa of the point of intersection of this chord with thex-axis 
will be the approximate value of the root (Fig. 156). In order to 
find this approximate value let us Write the équation of the straight 
line AB that passes through two given points A [xlt /(x 2)] and 
® / (*î)] •

y — / ( * i )  x — xx
/ ( * * )  —  / ( • *  l )  X2 X\

Since y = 0 

whence

at x = alt it follows that
— f(x i) ai—*i

—  !> Xt  —  X t

a1 = x1 (x2— x1) / ( x 1) 

/(x»)-/(x l) (2)
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218 Ch. 6 . The Curvature cj a Curve

or
ax * 1  f ( X. 2) —  Xi f ( X 1)

f ( x t ) — f (x  ,T" (2')

To obtain a more exact value of the root, we détermine /(a,). 
If /(*,) <  0, then repeat the same procedure applying formula (2') 
to the interval [alt *,]. If / ( a ,)>  0, then apply this formula to 

tne interval [je,, a j .  By repeating this pro-
cedure several times we will obviously obtain 
more and more précisé values of the root
at , a„ etc.

Example I. Approximate the roots of the équation 

/ (  x) =  x3 — fix +  2 =  0

Solution. First find the intervals wuere the fun- 
ction f (x) is monotonie. Taking the dérivative 
f' (x) =  3x2 — 6 , we find that it is positive for x < — Ÿ 2  , 
négative for — V ' 2 < x < - \ ~ y r2 and again positive 
for x > Ÿ 2  (Fig. 157). Thus, the function has three 
intervals of monotonicity, in each of which there is 
one root.

To simpliiy the calculations, let us narrow these 
intervals of monotonicity (there should be a corres- 
ponding root in each interval). To do this, substitute 
into expression f (x), at random, some values of x, 
then isolate (within each interval of monotonicity) 
shorter intervals such that the functions at the end 
points hâve different signs:

—3) =  —7 \
- 2 )  =  6 f

x1 =  0 ,
*2=1.
x<i — —3, 
x4 =  —2 ,

5̂ = 2,
Xq =  3,

Thus, the roots lie within the intervals

( - 3 ,  - 2 , ) ,  (0, 1), (2, 3)

Find the approximate value of the root in the interval (0, 1); from formula (2) 
we hâve

( 1— 0)2 2

/  (0) =  2 

/(!) = -  3 
/  (—3) =  —7 

t i r
f (2) =  — 2 \ 
/ (  3 )=  11 f

= 0- = 0.4

Since
—3—2 5

/(0.4) =  0.43 — 6-0.4 +  2 =  —0.336, f (0) =  2

it follows that the root lies between 0 and 0.4. Again applying (2 ) to this 
interval, we get the following approximation:

(0.4 —0).2 _  0.8
a2 =  0 - r =  0.342, etc.

-0.336—2 2.336"

We approximate the roots in the other intervals in similar fashion.
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2 . Method of tangents (Newton’s method). Again, let f ( xx) < 0 , 
/(x2) >  0 . On the interval [x,, x2] the first dérivative does not 
change sign. Then there is one root of the équation f(x) = 0 in the 
interval (xx, x2). Let us assume that the second dérivative does not 
change sign in the interval [x1( x2] either; this can be achieved by 
reducing the length of the interval within which the root lies.

Préservation of the sign of the second dérivative on the interval 
[xl( x2] means that the curve is either only convex or only con-
cave on [x1( x2].

Draw a tangent to the curve at the point B (Fig. 158). The 
abscissa a, of the point of intersection of the tangent with the 
x-axis will be an approximate value of the root. To find this 
abscissa, write the équation of the tangent at the point B:

y — f{xt) = f , (xt)(x— xt)

Noting that x =  ax at y = 0, we hâve

• _ Ü î î 2. 
- f  <*> (3)

Then, drawing the tangent line at the point [at, /(a,)], we 
analogously find a more exact value of the root a2. By repeating 
this procedure we can calculate the approximate value of the root 
to any desired degree of accuracy.

Note the following. If we drew the tangent to the curve not 
at the point B but at A, it might appear that the point of inter-
section of the tangent with the x-axis lies outside the interval 
(X j, x 2) .

From Figs. 158 and 159 it follows that the tangent should be 
drawn at the end of the arc at which the signs of the function 
and its second dérivative coïncide. Since it is given that on the 
interval [xx, x2] the second dérivative préserves its sign, the signs 
of the function and the second dérivative must coïncide at one
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220 Ch. 6. The Curvature of a Curve

of the end points. This rule also holds for the case where / ' (x) <C 0. 
If the tangent is drawn at the left end point of the interval, 
then in formula (3) we must put x, in place of x2:

û| — Xj /(x  i)
/' (*i) O')

When there is a point of inflection C in the interval (xlf x2), 
the method of tangents can yield an approximate value of the

root lying without the interval (x,, x2) 
(Fig. 160).

Example 2 . Apply formula (3') to finding the 
root of the équation

= — 6x +  2 = 0

within the interval (0, 1). We hâve

/ (0) =  2, /' (0) =  (3x2 —6) | x=0 =  —6* 
f ” ( x )  =  6 x ^ Q

and so from (3') we get
Fig. 160

ai= 0 -
: ? 6 = 4 = o m

3. Combined method (Fig. 161). Applying at the same time on 
the interval (x,, x2] the method of chords and the method of tan-
gents, we get two points a, and at lying on either side of the 
desired root a, since f (a,) and f (a,) 
hâve different signs. Then, on the 
interval [a,, a,] a gain apply the 
method of chords and the method 
of tangents. This yields two num- 
bers: a2 and a2, which are still d o -
ser to the value of the root. We 
continue in this manner until the 
différence between the approximate 
values found is less than the requi- 
red degree of accuracy. It will be 
noted that in the combined mc- 
thod we approach the sought-for root 
from two sides simultaneousiv 
(i.e., at the same time we appro-
ximate the root with an excess and with a déficit).

To illustrate in the case we hâve examined it will be clear that by substi-
tution we hâve

/  (0.333) > 0, /  (0.342) < 0 

Hence, the root lies between the approximate values obtained:

0.333 < x < 0.342
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