
INVESTIGATING THE BEHAVIOUR OF FUNCTIONS

ATEMENT OF THE PROBLEM

A studyof the quantitative aspect of natural phenomena leads lo 
the establishment and study of functional relations between the 

variables involved. If such a functional relationship can be expressed 
analytically, that is, in the form of one or more formulas, we are 
• lien in a position to investigate it with the tools of mathematical
analysis. For instance, a study of the flight of a shell in empty
space yields a formula that gives the dependence of the range R
upon the angle of élévation a  and the initial velocity o0:

D ti® sin 2a 
* ~  g 

(g is the accélération of gravity).
With this formula we can détermine at what angle a  the range 

R will be greatest, or least, and what the conditions must be for 
1 lie range to increase as the angle a  is increased, etc.

Let us consider another instance. Studies of oscillations of a load 
un a spring (of a railway car or automobile) yielded a formula 
showing how the déviation y of the load from a position of equi- 
librium dépends on the time t :

y =  e~kt (A cos at +  B sin at)
For a given oscillatory system the quantities k, A, B, © that enter 
Into this formula hâve a very definite meaning (they dépend upon 
the elasticity of the spring, the load, etc., but do not change 
with time /) and for this reason are considered constant.

On the basis of this formula we can find out at what values of 
t the déviation y will increase with increasing t , how the maximum 
déviation varies as a function of time, for what values of t we 
observe these maximum déviations, for what Values of t we obtain 
maximum velocities of motion of the load, and a number of other 
I longs.

AU these questions are embraced by the concept “investigating 
the behaviour of a function”. It is obviously very difficult to dé-
termine ail these questions by calculating the values of a function 
at spécifie points (like we did in Chapter 2). The purpose of this 
ehapter is to establish more general techniques for investigating 
the behaviour of functions.

CHAPTER 5 

INVESTIGATING THE BEHAVIOUR OF 'FUNCTIONS 

• 

5.1. STATEMENT OF TME PROBLEM 

A study of the quantitative aspect of natural phenomena leads 
to the establishment and study of functional relations between the 
variables involved. If such a functional relationship can be expressed 
nna lytically, that is, in the. form of one or more formulas, we are 
then in a position to investigate it with the tools of mathematical 
nnalysis. For instance, a study of the flight of a shell in empty 
"pace yields a formula that gives the dependence of the range R 
upon the angle of elevation a and the initial velocity v0 : 

I . 2 R = vosm a 
g 

(R is the acceleration of gravity). 
With this formula we can determine at what angle a the range 

N will be greatest, or least, and what the conditions must be for 
the range to increase as the angle a is increased, etc. 

Let us consider another instance. Studies of oscillations of a load 
011 a spring (of a railway car or automobile) yielded a formula 
"howing how the deviation y of the load from a position of equi-
1 ihrium depends on the time t: 

y = e-kt (A cos wt+ B sin wt) 
1-'<>r a given oscillatory system the quantities k, A, B, w that enter 
,nto this formula have a very definite meaning (they depend upon 
the elasticity of the spring, the load, etc., but do not change 
with time t) and for this reason are considered constant. 

On the basis of this formula we can find out at what values of 
I the deviation y will increase with increasing t, how the maximum 
ch·viation varies as a function of time, for what values of t we 
ohscrve these maximum deviations, for what values of t we obtain 
maximum velocities of motion of the load, and a number of other 
things. 

A II these questions are embraced by the concept "investigating 
t ht• behaviour of a function". It is obviously very difficult to de­
t,,rmine all these questions by calculating the values of a function 
nt specific points (like we did in Chapter 2). The purpose of this 
l'hapter is to establish more general techniques for investigating 
the behaviour of functions. 
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5.2 1NCREASE AND DECREASE OF A FUNCTION

In Sec. 1.6 we gave a définition of an increasing and a decrea- 
sing function. We will now apply the concept of the dérivative 
to investigate the increase and decrease of a function.

Theorem. (1) If a function f (x) ,  which has a dérivative on an 
interval [a, b], increases on this interval, then its dérivative on 
[a, b] is not négative, that is, f  (x) ^  0.

(2) If the function f(x) is continuous on the interval [a, b] and 
is différentiable on (a, b), where f' (x) >  0 for a < x < b, then the
function increases on the interval [a, b\.

Proof. We start by proving the first part of the theorem. Let 
/(je) increase on the interval [a, b], Increase the argument je by Aje 
and consider the ratio

f(x-\-Ax) — f(x) 
Ajc ( )

Since f (x) is an increasing function,
f  (x +  Ax) >  f  (x) for A.v >  0

and
f (x +  Ax) <  f (x) for Ax <  0

In both cases

and consequently

f l x + A x ) - n x )  Q 
Ax ^

lim f(*+ A x)-/W 0
Ax->0 Ax

(2)

which means f ' ( x ) ^ 0 ,  which is what we set out to prove. [If we 
had /' (x) <  0, then for sufficiently small values of Ax, ratio (1)
would be négative, but this would contradict relation (2).]

Let us now prove the second part of the theorem. Let / ' (x) >  0
for ail values of x on the interval (a, b).

Let us consider any two values jcx and x2, xx <  x2, on the interval
[a, b].

By Lagrange’s mean-value theorem we hâve
f(.xi)— f(x1) = f  {%) (x2— Xj), x1< t < x 2

It is given that f' (|) >  0, hence f  (*2)—/( jq) >  0, and this means 
that f(x) is an increasing function.

There is a similar theorem for a decreasing (différentiable) 
function as well, namely:

If  f (x) decreases on an interval [a, b\, then f ’ (je) < 0  on this 
interval. If / '( * )<  0 on (a, b), then f (x) decreases on [a, b], [Of
course, we again assume that the function is continuous at ail 
points of [a, b] and is différentiable everywhere on (a, &).]
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5.2 INCREASE AND DECREASE OF A FUNCTION 

In Sec. 1.6 we gave a definition of an increasing and a decrea­
sing function. We will now apply the concept of the derivative 
to investigate the increase and decrease of a function. 

Theorem. ( 1) / f a function f ( x ), which has a derivative on an 
interval [a, b], increases on this interval, then its derivative on 
[ a, b] is not negative, that is, f' (x) ~ 0. 

(2) If the function f (x) is continuous on the interval [a, b] and 
is differentiable on (a, b), where f' (x) > 0 for a < x < b, then the 
function increases on the interval [a, b]. 

Proof. We start by proving the first part of the theorem. Let 
f (x) increase on the interval [a, b]. Increase the argument x by ~x 
and consider the ratio 

f (x+ hx)-f (x) 
hx 

Since f (x) is an increasing function, 

f (x + ~x) > f (x) for ~x > 0 
and 

In both cases 

and consequently 

f (x + ~x) < f (x) for .1x < 0 

f (x+hx)-f (x) > O 
Ax 

lim f (x+ l\x)-f (x) ~ 0 
AX-+0 l\X 

(I) 

(2) 

whic~ means f' (x) ~ 0, which is what we set out to prove. [If we 
-had f' (x) < 0, then for sufficiently small values of ~x. ratio (I) 
would be negative, but this would contradict relation (2).] 

Let us now prove the second part of the theorem. Let f' (x) > 0 
for all values of x on the interval (a, b). 

Let us consider any two values x1 and x2 , x1 < x2 , on the interval 
[a, b]. 

By Lagrange's mean-value theorem we have 

f (X2)-f (X1) = f' (s) (X2--X1), X1 < 6 < X2 

It is given that f' (s) > 0, hence f (x2)-f (x1) > 0, and this means 
that f (x) is an increasing function. 

There is a similar theorem for a decreasing (differentiable) 
function as well, namely: 

If f (x) decreases on an interval [a, b], then f' (x) ~ 0 on thi·s 
interval. If f' (x) < 0 on (a, b), then f (,c) decreases on [a, b]. (Of 
course, we again assume that the function is continuous at all 
points of [a, b] and is differentiable everywhere on (a, b).] 
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5.3 Maxima and Minima of Fundions 157

Note. The foregoing theorem expresses the following géométrie 
fjict. If on an interval [a, b] a function f(x) increases, then the 
langent to the curve y = f(x) at each point on this interval forms 
an acute angle q> with the x-axis or (at certain points) is horizontal; 
I lie tangent of this angle is not négative: f' (x) =  tan <p ^  0 (Fig. 98a). 
If the function f(x) decreases on the interval [a, 6], then the angle 
of inclination of the tangent line forms an obtuse angle (or, at some

ooints, the tangent line is horizontal)- the tangent of this angle 
Is not positive (Fig. 986). We can illustra te the second part of the 
llieorem in similar fashion. This theorem permits judging the increase 
or decrease of a function by the sign of its dérivative.

Example. Détermine the domains of increase and decrease of the function

y  =  x*

Solution. The dérivative is equal to

y ' =  4X3

For x > 0 we hâve y '  > 0 and the function increases; for x  <  0 we hâve y ' <  0 
and the function decreases (Fig. 99).

5.3 MAXIMA AND MINIMA OF FUNCTIONS

Définition of a maximum. A function f (x ) has a maximum at 
tlie point xt if the value of the function f(x) at the point xx is 
greater than its values at ail points of a certain interval containing 
t lie point xt. In other words, the function f(x) has a maximum 
when x =  x, if f ( x l + Ax) <  f (x,) for any Ax (positive and négative) 
Ihat are sufficiently small in absolute value.*

* This définition is sometimes formuiated as follows: a function / ( x) has 
h maximum at xt if it is possible to find a neighbourhood (a, p) of (a < xt < 6 ) 
M id i that for ali points of this neighbourhood different from xx the inequality 
/ (x) < ( (xj) is fulfilled.
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Note. The foregoing theorem expresses the following geometric 
fact. If on an interval [a, b] a function f (x) increases, then the 
tungent to the curve y = f (x) at each point on this interval forms 
1111 acute angle <p with the x-axis or (at certain points) is horizontal; 
tlw tangent of this angle is not negative: f' (x) = tan q, ~ 0 (Fig. 98a). 
If the function f (x) decreases on the interval [a, b], then the angle 
of inclination of the tangent line forms an obtuse angle (or, at some 
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l,oints, the tangent line is horizontal)· the tangent of this angle 
, not positive (Fig. 98b). We can il~ustrate the second part of the 

t hcorem in similar fashion. This theorem permits judging the increa~e 
or decrease of a function by the sign of its derivative. 

Example. Determine the domains of increase and decrease of the function 

Y=X' 

Solution. The derivative is equal to 

y' = 4x3 

h,r x > 0 we have y' > 0 and the function increases; for x < 0 we have y' < 0 
,rnd the function decreases (Fig. 99). 

5.3 MAXIMA AND MINIMA OF FUNCTIONS 

Definition of a maximum. A function f (x) has a maximum at 
the point x1 if the value of the function f (x) at the point x1 is 
.:rcater than its values at all points of a certain interval containing 
the point x1 • In other words, the function f(x) has a maximum 
when x = x1 if f (x1 + ~x) < f (x1) for any ~x (positive and negative) 
that are sufficiently small in absolute value.* 

• This definition is sometimes formulated as follows: a function f (x) has 
n maximum at x1 if it is possible to find a neighbourhood (a, ~) of x1 (a < x1 < 8) 
-11ch that for all points of this neighbourhood different from x1 the inequality 
/ (x) < f (x1) is fulfi I led. 
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158 Ch. 5. Investigating the Behaviour of Functions

For example, the function y = f (x ), whose graph is given in 
Fig. 100, has a maximum at x = xx.

Définition of a minimum. A function f(x) has a minimum at 
x = x2 if

f (x2 + Ax)> f (xt)

for any Ax (positive and négative) that are sufficiently small in 
absolute value (Fig. 100).

For instance, the function y = xA considered at the end of the 
preceding section (see Fig. 99) has a minimum for x = 0, since 
y =  0 when x = 0 and y >  0 for ail other values of x.

In connection with the définitions of maximum and minimum, 
note the following.

1. A function defined on an interval can reach maximum and 
minimum values only for values of x that lie within the given 
interval.

2. One should not think that the maximum and minimum of a 
function are its respective largest and smallest values over a given 
interval: at a point of maximum, a function has the largest value 
only in comparison with those values that it has at ail points 
sufficiently close to the point of maximum, and the smallest value 
only in comparison with those that it has at ail points sufficiently 
close to the minimum point.

To illustrate, take Fig. 101. Here is a function, defined on the 
interval [a, b], which

at x =  x, and x = x3 has a maximum, 
at x =  Xj and x = xt has a minimum,

but the minimum of the function at x = xt is greater than the 
maximum of the function at x — xv At x = b, the value of the 
function is greater than any maximum of the function on the interval 
under considération.
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For example, the function y = f (x), whose graph is given in 
Fig. 100, has a maximum at x = x1 • 

Definition of a minimum. A function f (x) has a minimum at 
X = X2 if 

f (x2 + L1x) > f (x2) 

for any L1x (positive and negative) that are sufficiently small in 
absolute value (Fig. I 00). 

For instance, the function y = x' considered. at the end of the 
preceding section (see Fig. 99) has a minimum for x = 0, since 
y = 0 when x = 0 and y > 0 for all other values of x. 
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In connection with the definitions of maximum and minimum, 
note the fallowing. 

I. A function defined on an interva] can reach maximum and 
minimum values only for values of x that lie within the given 
interval. 

2. One should not think that the maximum and minimum of a 
function are its respective largest and smallest values over a given 
interval: at a point of maximum, a function has the largest value 
only in comparison with those values that it has at all points 
sufficiently close to the point of maximum, and the smallest value 
only in comparison with those that it has at all points sufficiently 
close to the minimum point. 

To illustrate, take Fig. 101. Here is a function, defined on the 
interval [a, b], which 

at x = x1 and x = x3 has a maximum, 
at x = x2 and x = x, has a minimum, 

but the minimum of the function at x = x, is greater than the 
maximum of the function at x=x1 • At x=b, the value of the 
function is greater than any maximum of the function on the interval 
under consideration. 
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5.3 Maxima and Minima of Funciions 159

The generic terms for maxima and minima of a function are 
cxtremum (pl. extrema) or extreme values of the function.

To some extent, the extrema of a function and their positions
ou the interval [a, b] characterize 
versus changes in the argument.

Below we give a method for 
linding extrema.

Theorem 1. (A necessary condi-
tion for the existence of an extre- 
mum). If ai a point x = xx a 
difjerentiable function y = f (x) 
fias a maximum or minimum, ifs 
dérivative vanishes at this point: 
/'(*,) =  0.

Proof. For defini teness, let us 
assume that at the point x =  x, 
the function has a maximum. 
Then, for sufficiently small (in 
Ax(Ax^O) we hâve

the variation of the function

absolute value) incréments

that is,
/(x, + A x X / f o )

/(Xj +  Ax)—/(x x) <  0

But in this case the sign of the ratio
/ ( x ,  +  A x) — f(x1) 

Ax

is determined by the sign of Ax, namely:

/(*i +  A*)— /(*i) ^  q wjien a * <  0

tSxA ± ï*t zU xA <  q when Ax >  0
Ax

By the définition of a dérivative we hâve

f  (*,)=Hm
A x  -►©

f(xt+Ax)—f(Xj)

If f f a )  has a dérivative at x =  x,, the limit on the right is 
independent of how Ax approaches zéro (remaining positive or né-
gative).

But if Ax—*-0 and remains négative, then
o

But if Ax —►() and remains positive, then
/ ' W < o
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The generic terms for maxima and minima of a function are 
,·xtremum (pl. extrema) or extreme values of the function. 

To some extent, the extrema of a function and their positions 
on the interval [a, b] characterize the variation of the function 
versus changes in the argument. y 

Below we give a method for 
lind ing extrema. 

Theorem 1. (A necessary condi­
t Ion for the existence of an extre­
mum). If at a point X=X1 a 
differentiable function y = f (x) 
ltas a maximum or minimum, its 
tJ,,rivative vanishes at this point: 
/' (x1) = 0. 

Proof. For definiteness, let us 
assume that at the point x = x1 

the function has a maximum. 

0 a x1 .rz .rJ z~ b ;r 

Fig. 101 

Then, for sufficiently small (in absolute value) increments 
t\x ( Llx =/:= 0) we have 

that is, 
f (x1 + L\x)-f (x1) < 0 

But in this case the sign of the ratio 

I (x1 + l\x)-f (x1) 
~x 

is determined by the sign of ~x, namely: 

1 (xi +~;~ -f (xi) > 0 when /u < 0 

1 (xi +~;!-! (xi) < 0 when Ax> 0 

By the definition of a derivative we have 

f' (xi) = Jim f (x1 + l\x)-f (x1) 
A.t-+ f) ~X 

If f (x1) has a derivative at x = x 1 , the limit on the right is 
independent of how L\x approaches zero (remaining positive or ne­
gative). 

But if Llx-+0 and remains negative, then 

f' (x1) ~ 0 

But if L\x-+ 0 and remains positive, then 

f' (x1) ~ 0 
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160 Ch. 5. Invesiigating the Behaviour of Funcüons

Since f' (xx) is a definite number that is independent of the way 
in which Ax approaches zéro, the latter two inequalities are con-
sistent only if

n *  i)= o

The proof is similar for the case of a minimum of a function. 
Corresponding to this theorem is the following obvious géométrie 

fact: if at points of maximum and minimum, a function f (x) has 
a dérivative, the tangent line to the curve 
y = f(x) at each point is parallel to the x-axis. 
Indeed, from the fact that f' (xx) =  tan<p =  0, 
where <p is the angle between the tangent line 
and the x-axis, it follows that <p =  0 (Fig. 100).

From Theorem 1 it follows immediately that 
if for ail considered values of the argument x the 
function f (x) has a dérivative, then it can hâve 
an extremum (maximum or minimum) only at 
those values for which the dérivative vanishes. The 
converse does not hold: it cannot be said that 
there definitely exists a maximum or minimum for 
every value at which the dérivative vanishes. For 
instance, in Fig. 100 we hâve a function for 
which the dérivative at x =  x, vanishes (the 
tangent line is horizontal), yet the function at 

this point is neither a maximum nor a minimum.
In exactly the same way, the function y — x8 (Fig. 102) a tx  =  0 

has a dérivative equal to zéro:

( « / ')* =  o =  ( 3 * * )* = o  =  0

but at this point the function has neither a maximum nor a mini-
mum. Indeed, no matter how close the point x is to O, we will 
always hâve

x* <  0 when x <  0
and

x* >  0 when x >  0

We hâve investigated the case where a function has a dérivative 
at ail points on some closed interval. Now what about those points 
at which there is no dérivative? The following examples will show 
that at these points there can only be a maximum or a minimum, 
but there may not be either one or the other.

Example 1. The function y  — \x \  has no dérivative at the point x = 0  (at this 
point the curve does not hâve a definite tangent line), but the function has a 
minimum at this point: y  =  0  when x = 0 , whereas for any other point x diffe-
rent from zéro we hâve y  >  0 (Fig. 103).
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Since f' (x1) is a definite number that is independent of the way 
in which l!x approaches zero, the latter two inequalities are con­
sistent only if 

f' (x1) = 0 

The proof is similar for the case of a m1n1mum of a function. 
Corresponding to this theorem is the fallowing obvious geometric 

fact: if at points of maximum and ~inimum, a function f (x) has 
y a derivative, the tangent line to the curve 

y = f (x) at each point is parallel to the x-axis. 
Indeed, from the fact that f' (x1 ) = tan cp = 0, 
where q> is the angle between the tangent line 
and the x .. .axis, it follows that cp = 0 (Fig. 100). 

From Theorem 1 it follows immediately that 
if for all considered values of the argument x the 

z function f ( x) has a derivative, then it can have 
an extremum (maximum or minimum) only at 
those values for which the derivative vanishes. The 
converse does not hold: it cannot be sa,id that 
there definitely exi!,tS a maximum or minimum -for 
every value at which the derivative vanishes. For 
instance, in Fig. 100 we have a function for 

Fig. 102 which the derivative at x = x 3 vanishes (the 
tangent line is horizontal), yet the function at 

this point is neither a maximum nor a minimum. 
In exactly the same way, the function y=x3 (Fig. 102) at x=O 

has a derivative equal to zero: 

(y')x=O = (3Xl)X=O = 0 

but at this point the function has neither a maximum nor a mm1-
mum. Indeed, no matter how close the point x is to 0, we will 
always have 

x3 < 0 when x < 0 

and 
x8 > 0 when x > 0 

We have investigated the case where a function has a derivative 
at all points on some closed interval. Now what about those points 
at which there is no derivative? The following examples will show 
that at these points there can only be a maximum or a minimum, 
but there may not be either one or the other. 

Example 1. The function y = f x I has no derivative at the point x= 0 (at this 
point the curve does not have a definite tangent line), but the function has a 
minimum at this point: y = 0 when X= 0, whereas for any other point x diffe­
rent from zero we have y > 0 (Fig. 103). 
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5.3 Maxima and Minima of Functions 161

/  _ 2 \ 3 / 2

Example 2 . The function ÿ = \ l —x 3 J has no dérivative at x =  0, since 

1  -  - -
y' — — ^ 1—x 3 ^j2 x becomes infinité at x*=0 , but the function has

n maximum at this point: / ( 0 )= 1 ,  f(x) <  1 for x different from zéro (Fig. 104).

Example 3. The function y = x  has no dérivative at x = 0  (y' —► »  as 
x —*- 0 ). At this point the function has neither a maximum nor a minimum: 
/ (°) =  0, f  \x) <  0 for x <  0, f (x) >  0 for x >  0 (Fig. 105).

Thus, a function can hâve an extremum only in two cases: either 
at points where the dérivative exists and is zéro, or at points where 
the dérivative does not exist.

It must be noted that if the dé-
rivative does not exist at some 
point (but exists at nearby points), 
then at this point the dérivative 
is discontinuous.

The values of the argument for 
which the dérivative vanishes or 
Is discontinuous are called critical 
points or critical values.

From what has been said it follows that not for every critical 
value does a function hâve a maximum or a minimum. However, 
if at some point the function attains a maximum or a minimum, 
this point is definitely critical. And so to find the extrema of a 
function do as follows: find ail the critical points, and then, in- 
vestigating separately each critical point, find out whether the 
function will hâve a maximum or a minimum at that point, or 
whether there will be neither maximum nor minimum.

Investigation of a function at critical points is based on the 
following theorem.

Theorem 2. (Sufficient conditions for the existence of an extre-
mum). Let there be a function f(x) continuons on some interval 
containing a critical point x t and différentiable at ail points of the 
interval (with the exception, possibly, of the point xt itself). I f in 
tnoving from left to right through this point the dérivative changes 
sign from plus to minus, then at x = x l the function has a maximum.
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Example 2. The function y = l -x 3 has no derivative at x = 0, since 
2 ..!.. _..!. 

11' -- - ( l -x 3 ) 
2 

x 
3 

becomes infinite at x-o, but the function has 

11 maximum at this point: f (0) = 1, f (x) < I for x different from zero (Fig. 104). 

Example 3. The function y=v-; has no derivative at x=O (y'-+oo as 
x -+ 0). At this point the function has neither a maximum nor a minimum: 
/ (0) =--= 0, f (x) < 0 for x < 0, / (x) > 0 for x > 0 (Fig. 105). 
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Thus, a function can have an extremum only in two cases: either 
at points where the derivative exists and is zero, or at points where 
the derivative does not exist. y 

It must be noted that if the de­
rivative does not exist at some 
point (but exists at nearby points), 
then at this point the derivative 
ls discontinuous. 

The values of the argument for 
which the derivative vanishes or 
is discontinuous are called critical 
points or critical values. 

Fig. 105 

X 

From what has been said it follows that not for every critical 
value does a function have a maximum or a minimum. However, 
if at some point the function attains a maximum or a minimum, 
this point is definitely critical. And so to find the extrema of a 
function do as follows: find all the critical points, and then, in­
vestigating separately each critical point, find out whether the 
function will have a maximum or a minimum at that point, or 
whether there will be neither maximum nor minimum. 

Investigation of a function at critical points is based on the 
f o1 lowing theorem. 

Theorem 2. (Sufficient conditions for the existence of an extre­
mum). Let there be a function f (x) continuous on some interval 
containing a critical point x1 and differentiable at all points of the 
interval ( with the exception, possibly, of the point x1 itself). If in 
moving from left to right through this point the derivative changes 
sign from plus to minus, then at x = x1 the function has a maximum. 
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162 Ch. 5. Investigating the Behauiour of Functions

But if in moving through the point x, from left to right the dérivative 
changes sign from minus to plus, the function has a minimum at 
this point.

And so
J f' (x) >  0 when x <  xt
\  f' (x) <  0 when x >  xt

then at x1 the function has a maximum;

if fbt I  ?  ^  < ° When * <  
l f ’ (x) >  0 when x >  xt

then at xt the function has a minimum. Note here that the con-
ditions (a) or (b) must be fulfilled for ail values of x that are
sufficiently close to that is, at ail points of some sufficiently 
small neighbourhood of the critical point xt.

Proof. Let us first assume that the dérivative changes sign from 
plus to minus, in other words, that for ail x sufficiently close to 

we hâve
f' (x) >  0 when x  <  xx 
f' (x) <  0 when x >  xx

Applying the Lagrange theorem to the différence f (x )—f  (xJ 
we hâve

f (x)— f(x1) = f ’ (|) (*—*,)

where |  is a point lying between x and xt.
(1) Let x <  x,; then

i  <  *i, f ' ( l ) >  0, f'  (£)(*—X jX O  

and, consequently,
f (x)— f(x1) <  0

or
f ( x ) < f ( x  x) (1)

(2) Let a: >  Arx; then

i> * i»  f ( l ) <  0, f ' ( l ) ( x - x l) <  0 

and, consequently,
f (x)—f(x1) <  0

or
/(* )< /(* !) (2)

The relations (1) and (2) show that for ail values of * sufficiently 
close to Xi the values of the function are less than those at xx. 
Hence, the function f(x) has a maximum at the point xt .
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But if in moving through the point x1 from left to right the derivative 
changes sign from minus to pl~s, the function has a minimum at 
this point. 

And so 

if (a) f f' (x) > 0 when x < x1 

\ f' (x) < 0 when x > x1 

then at x1 the function has a maximum; 

if (b { f' (x) < 0 when x < x1 

) f' (x) > 0 when x > x1 

then at x1 the function has a minimum. Note here that the con­
ditions (a) or (b) must be fulfilled for all values o~ x that are 
sufficiently close to x1 , that is, at al] points of some sufficiently 
small neighbourhood of the critical point x1 • 

Proof. Let us first assume thaf the derivative changes sign from 
plus to minus, in other words, that for all x sufficiently close to 
x1 we have 

f' (x) > 0 when x < x1 

f' (x) < 0 when x > x1 

Applying the Lagrange theorem to the difference f (x)-f (x1) 

we have 

where ~ is a point lying between x and x1 • 

(I) Let x < x1 ; then 

S < Xi, f' (~) > 0, f' (S) (X-X1) < Q 

and, consequently, 
f (x)-f (x1) < 0 

or 

(2) Let x > x1 ; then 

S > X1, f' (~) < 0, f' (~) (X-·X1) < Q 

and, consequently, 

or 
f (x)-f (x1) < 0 

f (x) < f (x1) 

(1) 

(2) 

The relations (I) and (2) show that for all values of x sufficiently 
close to x1 the values of the function are less than those at x1 • 

Hence, the function f (x) has a maximum at the point X19 
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5.3 Maxima and Minima of Functions 163

The second part of the theorem on the sufficient condition for 
a minimum is proved in similar fashion.

Fig. 106 illustrâtes the meaning of Theorem 2.
At jc =  je,, suppose f ' (x1) = 0 and let the following inequalities 

be fulfilled for ail x sufficiently close to x,:

f  (x) >  0 when x <  xx 
f' (x) <  0 when x >  x,

Then for x <  xx the tangent to the curve forms with the x-axis 
an acute angle, and the function increases, but for x >  x, the 
tangent forms with the x-axis an obtuse angle, and the function 
decreases; at x =  x, the function passes from increasing to decrea- 
sing values, wliich means it has a 
maximum.

If at x, we hâve /' (xa) - 0 and 
for ail values of x sufficiently close 
to xa the following inequalities 
hold:

f' (x) <  0 when x <  x2 
f'  (x) >  0 when x >  x,

then at x <  x2 the tangent to the 
curve forms with the x-axis an 
obtuse angle, the function decreases, and at x >  x„ the tangent 
to the curve forms an acute angle, and the function increases. 
At x =  x2 the function passes from decreasing to increasing values, 
which means it has a minimum.

If at x =  xs we hâve f' (x„) = 0 and for ail values of x sufficiently 
close to x3 the following inequalities hold:

f' (x) >  0 when x <  x8 
f ’ (x) >  0 when x >  x8

then the function increases both for x <  x8 and for x >  x8. There- 
fore, at x =  x8 the function has neither a maximum nor a mini-
mum. Such is the case with the function y = x3 at x =  0.

Indeed, the dérivative y '=  3xa, hence,

(</'),=. =  0 
( y %<o>  o
( y ' ) x > *  > o

and this means that at x =  0 the function has neither a maximum 
nor a minimum (see Fig. 102).

5.3 Maxima and Minima of Functions 163 

The second part of the theorem on the sufficient condition for 
u minimum is proved in similar fashion. 

Fig. 106 illustrates the meaning of Theorem 2. 
At x = x1 , suppose f' (x1 ) = 0 and let the following inequalities 

be fulfilled for all x sufficiently close to x1 : 

f' (x) > 0 when x < x1 

f' (x) < 0 when x > x1 

Then for x < x1 the tangent to the curve forms with the x-axis 
an acute angle, and the function increases, but for x > x1 the 
tangent forms with the x-axis an obtuse angle, and the function 
decreases; at x = x1 the function passes from increasing to decrea­
sing values, which means it has a y 
maximum. 

If at x2 we have f' (x2) = 0 and 
for all values of x sufficiently close 
to x2 the following inequalities 
hold: 

f' (x) < 0 when x < x2 

f' (x) > 0 when x > x2 

then at x < x2 the tangent to the Fig. 106 
curve forms with the x-axis an 
obtuse angle, the function decreases, and at x > x2 the tangent 
to the curve forms an acute angle, and the function increases. 
At x = x2 the function passes from decreasing to increasing values, 
which means it has a minimum. 

If at x = x3 we have f' (x:1) = 0 and for all values of x sufficiently 
close to x3 the following inequalities hold: 

f' (x) > 0 when x < X3 

f' (x) > 0 when x > X8 

then the function increases both for x < x3 and for x > x3 • There­
fore, at x = x8 the function has neither a maximum nor a mini­
mum. Such is the case with the function y = x3 at x = 0. 

Indeed, the derivative y' = 3x2 , hence, 

(y')x=o = 0 
(y')x<o > 0 
(y')x>o > 0 

and this means that at x = 0 the function has neither a maximum 
nor a minimum (see Fig. 102). 
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164 Ch. S. Investigatlng the Behaviour of Funciions

5.4 TESTING A DIFFERENTIABLE FUNCTION FOR MAXIMUM 
AND MINIMUM WITH A FIRST DERIVATIVE

The preceding section permits us to formulate a rule for testing 
a différentiable function, y — f(x), for maximum and minimum.

1. Find the first dérivative of the function, i.e., /'(*).
2. Find the critical values of the argument x\ to do this:

(a) equate the first dérivative to zéro and find the real roots of 
the équation f ’ (x) = 0 obtained;

( b )  find the values of x at which the dérivative / ' ( jc ) becomes 
discontinuous.

3. Investigate the sign of the dérivative on the left and right 
of the critical point. Since the sign of the dérivative remains 
constant on the interval hetween two critical points, it is sufficient, 
for investigating the sign of the dérivative on the left and right 
of, say, the critical point xt (Fig. 106), to détermine the sign of 
the dérivative at the points a  and P ( jc ,< a < jc 2, xt <  p <  jc , ,  
where j c , and xt are the closest critical points).

4- Evaluate the function / ( jc ) for every critical value of the 
argument.

This gives us the following diagram of possible cases:

S igns o f  d é r i v a t i v e  / '  ( x )  w h e n  passin g  t h r o u g h  
c r i t i c a l  p o in t x t : C h a r a c t e r  o f  c r i t i c a l  p o i n t

x  <  xt j r = j r t X > x t

+ /'(Xi) =  0 or is discon-
tinuous

•

— Maximum point

— f r (*i) =  0  or is disconti-
nuous

+ Minimum point

+ /'(* i)  =  0  or is disconti-
nuous

+ Neither maximum nor 
minimum (function increa- 
ses)

/ '  (*i) =  0  or is disconti-
nuous

Neither maximum nor 
minimum (function dec- 
reases)

Example 1. Test the following function for maximum and minimum: 

y = ~ - 2 x * + 3 x + l

Solution, 1. Find the first dérivative:
= -4*4-3
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5.4 TESTING A DIFFERENTIABLE FUNCTION FOR MAXIMUM 
AND MINIMUM WITH A FIRST DERIVATIVE 

The preceding section permits us to formulate a rule for testing 
a differentiable function, y = f (x), for maximum and minimum. 

l. Find the first derivative of the function, i. e., f' (x). 
2. Find the critical values of the argument x; to do this: 

(a) equate the first derivative to zero and find the real roots of 
the equation f' (x) = 0 obtained; 

(b) find the values of x at which the derivative f' (x) becomes 
discontinuous. 

3. Investigate the sign of the derivative on the left and right 
of the critical point. Since the sign of the derivative remains 
constant on the interval hetween two critical points, it is sufficient, 
for investigating the sign of the derivative on the lrft and right 
of, say, the critical point x2 (Fig. 106), to determine the sign of 
the derivative at the points a and P (x1 < a< x2 , x2 < P < X3 , 

where x 1 and x3 are the closest critical points). 
4. Evaluate the function f (x) for every critical value of the 

argument. 
This gives us the following diagram of possible cases: 

Signs of derlvath·e I' (x) when pa~slng through 
critical point x1 : 

Character of crltlcal point 

X < Xt x=x, X > Xa 

+ /' (%1) = 0 or is discon- - .Maximum point 
tinuous 

• 

- f' (x1) = 0 or is disconti- + Minimum point 
nuous 

+ /' (x~) %: 0 or is discon ti- + Neither maximum nor 
nuous minimum (function increa-

ses) 

- f' (z1) = 0 or is d iscon ti- - Neither maximum 
nuous minimum (function 

reases) 

Example I. Test the following function for maximum and minimum: 

y =~-2x2 +3x+ 1 
3 

S()lution, 1. fincl the first derivative: 
y' =.t2 -4x+3 

nor 
dee .. 
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5 .4  T e s t i n g  a  F u n c tio n  f o r  m a x  a n d  m in  w i th  l s t  D é r iv a t iv e 165

2. Find the real roots of the dérivative:

Consequently,
x *—4j c+ 3  =  0

*i =1. ** = 3
The dérivative is everywhere contïnuous and so there are no other criticai 
points.

3. Investigate the criticai values and record the results in Fig. 107. 
Investigate the first criticai point X i = \ .  Since y '  =  (*— 1) ( x — 3),

for x  < 1 we hâve y' =  (—)•( — ) > 0 
for x  > 1 we hâve y '= (  +  )•(—) < 0

Thus, when passing (from left to right) through the value x x =  \ the déri-
vative changes sign from plus to minus. Hcnce, at * = 1  the function has a 
maximum, nameiy,

(y)x=
7

3

Investigate the second criticai point jc2 =  3:
when x  < 3 we hâve */' =  ( +  )•(— ) < 0 
when x  > 3 we hâve y' =  ( +  )-(-|-) > 0

Thus, when passing through the value x  =  3  the dérivative changes sign 
from minus to plus. Therefore, at jc =  3 the function has a minimum, nameiy:

Example 2, Test for maximum and minimum the function

5.4 Ttstin.g a Function for max and min with 1st Derivative 

2. Find the real roots of the derivative: 

x1 -4x+3=0 
Consequently, 

X1 = 1, X2 =3 
• 

165 

The derivative is everywhere continuous and so there are no other critic-al 
points. 

3. Inve&tigate the critical values and record the rtsults in Fig. 107. 
Investigate the first critical point x1 =I. Sincf) y' = (x-1) (x-3), 

for x < I we have g'=(-)·(-) > 0 
for x :> I we have g'=(+)+-) < 0 

Thus, when passing (from left to right) through the value x1 = 1 · the deri­
vative changes sign from plus to minus. Hence, at x= I the function has a 
maximum, namely, 

Investigate the second critical point x2 =3: 

when x < 3 we have y' = ( +) · ( - ) < 0 
when x > 3 we have g'=(+)·(+) > 0 

Thus, when passing through the value x =-= 3 the ci~rivativ_e changes sign 
from minus to plus. Therefore, at x = 3 the function has a ml nilnum, namely: 

!I (y)x=a= I 

:t,=I 

Fie. 107 

This investigation yi2lds the graph of the 
function {Fig. 107). 

!J 

Y• (x-1) Y.i1 

Fig. 108 

Example 2. Test for maximum and minimum the function 

11=-=.(x- I) Vi2 
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166 Ch. 5. Investigating the Behaviour of Functions

Solution. 1. Find the first dérivative:

2 ( x — 1)y' = y ^ - 5 x —2

3 y j

2.  Find the critical values of the argument: (a) find the points at which 
the dérivative vanishes:

y ' =
5 x —2 

3 * /T
= 0,

(b) find the points at which the dérivative becomes discontinuous (in this 
instance, it becomes infinité). Obviously, that point is

*2 = 0

(It will be noted that for x2 =  0 the function is defined and continuous.)
There are no other critical points.
3. Investigate the character of the critical points obtained. Investigate the 

2
point *i =  y -  Noting that

(y') 2 <  °> (y') 2 >  0
* < T  * > T

2
we conclude that at * =  -=- the function has a minimum. The value of the o
function at the minimum point is

4 K I6 X
Investigate the second critical point * =  0. Noting that

(iO *<o>0' (y% > 0< °
we conclude that at x  =  0  the function has a maximum, and (y)x=0 =  0. The 
graph of the investigated function is shown in Fig. 108.

5.5 TESTING A FUNCTION FOR MAXIMUM 
AND MINIMUM WITH A SECOND DERIVATIVE

Let the dérivative of the function y = f(x) vanish at x = xl; we 
hâve f  (*j) =  0. Also, let the second dérivative f"(x) exist and be 
continuous in some neighbourhood of the point xx. Then the fol- 
lowing theorem holds.

Theorem. Let f ' (x1) = 0; then at x = x1 the function has a maxi-
mum if f"(x1) <  0, and a minimum if f”(x1) > 0 .

Proof. Let us first prove the first part of the theorem. Let
f ' (x1) = 0 and / ' W < 0

Since it is given that /"(x) is continuous in some small interval 
about the point x = xlt there will obviously be some small closed 
interval about the point x = xlt at ail points of which the second 
dérivative f ( x )  will be négative.

166 Ch. 5. Investigating the Behaviour of Functions 

Solution. 1. Find the first derivative: , v- 2 (x-1) 5x-2 
Y = x2+ ayx- =ayx-

2. Find the critical values of the argument: (a) find the points a-t which 
the derivative vanishes: 

5x-2 2 
y' = 3~ =0, X1=-5 

3V X 

(b) find the points at which the derivative becomes discontinuous (in this 
instance, it becomes infinite). Obviously, that point is 

X1=0 

(It will be noted that for x9 = 0 the function is defined and continuous.) 
There are no other critical points. 
3. Investigate the character of the critical points obtained. Investigate the 

point x1 = ! . Noting that 

(y') t < 0, (y') 2 > 0 
x<- x>-

6 ~ 

we conclude that at x= ! the function has a minimum. The value of the 

function at the mini mum point is 

(y) ,=(~-1)V4=-~~n 
x=- 5 2s s V 25 

6 

Investigate the second critical point x= 0. Noting that 

(y') % < 0 > Q' (y') X > 0 < Q 

we conclude that at x = 0 the function has a maximum, and (Yh=o = 0. The 
graph of the investigated function is shown in Fig. 108. 

5.5 TESTING A FUNCTION FOR MAXIMUM 
AND MINIMUM WITH A SECOND DERIVATIVE 

Let the derivative of the function y = f (x) vanish at x = x1 ; we 
have f' (x1) = 0. Also, let the second derivative r (x) exist and be 
continuous in some neighbourhood of the point x1 • Then the fol­
lowing theorem holds. 

Theorem. Let f' (x1) = 0; then at x = x1 the function has a maxi­
mum if f" (x1) < 0, and a minimum if f" (x1) > 0. 

Proof. Let us first prove the first part of the theorem. Let 

f' (x1) =0 and f"(x1) < 0 

Since it is given that f" (x) is continuous in some small interval 
about the point x = xtt there will obviously be some small closed 
interval about the point x = x1 , at all points of which the second 
derivative f" (x) will be negative. 
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5.5 Testing a Function for max and min with 2nd Dérivative 167

Since f"(x) is the first dérivative of the first dérivative, /"(*)=
. (P (x))', it follows from the condition (/' (*))' <  0 that P (x) 

decreases on the closed interval containing x = x1 (Sec. 5.2). But 
/' (a-,) =  0, and so on this interval we hafe / ' (x) >  0 when x <  xlt 
und when x >  x, we hâve /' (x) <  0; in other words, the deriva- 
live f' (x) changes sign from plus to minus when passing through 
lhe point x = xlt and this means that at the point xt the function 
f (x) has a maximum. The first part of the theorem is proved.

The second part of the theorem is proved in similar fashion: 
If j" (xi) >  0, then /" (jc) >  0 at ail points of some closed interval 
«bout the point xlt but then on this interval /" (x) =  (/' (*))' >  0 
mid, hence, P (x) increases. Since P(x1) =  0 the dérivative P (x) 
changes sign from minus to plus when passing through the point 
x,, i.e., the function f(x) has a minimum at x =  x1.

If at the critical point f"(x1) =  0, then at this point there may 
be either a maximum or a minimum or neither maximum nor 
minimum. In this case, investigate by the first method (see Sec. 5.4).

The scheme for investigating extrema with a second dérivative 
Is shown in the following table.

V ( x t ) t" (X j) C h a r a c t e r  o f  c r l t f c a l  p o i n t

0 Maximum point
0 + Minimum point
0 0 Unknown

Example 1. Examine the following function for maximum and minimum

ÿ =  2 s in x + c o s 2x

Solution. Since the function is periodic with period 2ji, it is sufficient to 
Investigate the function in the interval [0 , 2n],

1. Find the dérivative:

y' — 2  cos x — 2 sin 2x = 2  (cos x —2 sin x cos x) =  2 cos x (1 — 2  sin x)

2. Find the critical values of the argument:

2  cos x ( l — 2 sin x) = 0  

_ n .  _  n _  5ji _  3n
Xj g » Aj g • g ’ ^  2

3. Find the second dérivative:

y" =  —2 sin x —4 cos 2x

4. Investigate the character of each critical point:

5.5 Testing. a Function for ma,x and min with 2nd Derivative 167 ----
Since f" (x) is the first derivative of the first derivative, f" (x) = 

- -- (f' (x))', it follows from the condition (f' (x))' < 0 that f" (x) 
ctecreases on the closed interval containing x = x1 (Sec. 5.2). But 
f' (x1) = 0, and so on this interval we ha•e f' (x) > 0 when x < xu 
und when x > x1 we have f' (x) < O; in other words, the deriva­
tive f' (x) changes sign from plus to minus when passing through 
the point x = x1, and this means that at the point x1 the function 
/ (x) has a maximum. The first part of the theorem is proved. 

The second part of the theorem is proved in similar fashion: 
U f" (x1 ) > 0, then f" (x) > 0 at all points of some closed interval 
nbout the point x1 , but then on this interval f" (x) = (f' (x))' > O 
nnd, hence, f' (x) increases. Since f' (x1) = 0 the derivative f' (x) 
l'hanges sign from minus to plus when passing through the point 
x., i. e., the function f (x) has a minimum at x = ~i-

lf at the critical point /" (x1) = 0, then at this point there may 
he either a maximum or a minimum or neither maximum nor 
minimum. In this case, investigate by the first method (see Sec. 5.4). 

The scheme for investigating extrema with a second derivative 
is shown in the following table. 

f' (X1) f" (X1) Character of critical point 

0 - Maximum point 
0 + Minimum point 
0 0 Unknown 

Example 1. Examine the following function for maximum and minimum 

y=2 sin x+cos 2x 

Solution. Since the function is periodic with period 2,i, it is sufficient to 
tuvestigate the function in the interval [O, 2n]. 

l. Find the derivative: 

y' = 2 cos x-2 sin 2x= 2 (cos x-2 sin x cos x)=2 cos x (l-2 sin x) 

2. Find the critical values of the argument: 

2 cos x ( I - 2 sin x) = 0 
n n 5n 3n 

X1=5; X1=2; Xa=5, x,=2 

3. Find the second derivative: 

y" = -2 sin x-4 cos 2x 

4. lnvestiiate the character of each critical point: 

I I 
(y") n: =-2---4•-=-3 < 0 

x,=- 2 2 
I 
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168 Ch. 5. Investigating the Behaviour of F une fions

Hence, at the point we hâve a maximum:

Further,

^ I . 1 3
(y) JL- 2 ' 2  +  2  ~  2

e

( y ” )  n  = — 2 - 1  + 4 - 1  =  2  >  0

* = T

And so at the point xt =  ̂  we hâve a minimum:

(y) n = 2*1 — 1 =  1
t

At *s = - g -  we hâve

6

Thus, at #3 =  -^?- the function has a maximum:

0  1 , 1 3

(■y) _5n=2,T + T = T
X,~T

(y' )

3n

Finally,

Consequently, at =  we hâve a minimum:

 s jt= 2(—  i ) —  i == — 3x=--
2

The graph of the function under investigation is shown in Fig. 109.

1 —2 (— I)—4 (— 1)=  6 > 0

Fig. 109

The following examples will show that if at a certain point * =  *, 
we hâve f' (*,) = 0 and /" (*,) =  0, then at this point the function 
/ (x) can hâve either a maximum or a minimum or neither.
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Hence, at tbe point x1 ::,c:: ~ we have a maximum: 

Further, 

I I 3 
(g) n = 2·2+2=2 

x=--
6 

(y") n = -2 · I + 4 • I = 2 > 0 
x=­

t 

And so at the point x 2=; we have a minimum: 

(y) tc = 2 .f - I = 1 
x=­z 

531 
At x3 = 6 we have 

I I 
ly") =-2---4•-==-3 < 0 

51' 2 2 x=­e 

Thus, at .¥3 = 5: the function has a maximum: 

Finally, 

Consequently, 

I I 3 
(y) X;i=~= 2•2+2=2 

e 

(y") sn==-2(-1)-4(-1)=6 > 0 
x=­

t 

t 31t h .. a x, = 2 we ave a mm1mum: 

(y) 3;:1= 2(-))-] =-3 
X=-

2 

The iraph of the function under investigation is shown in Fig. 109. 

y• 2sin.r + cos 2.r 

z 

Fig. 109 

The following examples will show that if at a certain point x = x1 

we have f' (x1) = 0 and f" (x1) = 0, then at this point the function 
f (x) can have either a maximum or a minimum or neither. 
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5.5 Testing a Function for tnax and min with 2nd Dérivât ne 169

Example 2 . Test the following function for maximum and minimum:

y= l—xA
Solution. 1. Find the critical points:

(/' =  — 4X3, —4x* =  0, x=*0

2. Détermine the sign of the second dérivative at x =  0.

y* — — 12x2, (p'),=o = 0

It is thus impossible here to détermine the character of the critical point 
l>y means of the sign of the second dérivative.

3. Investigate the character of the critical point by the fiist method (see 
Sec. 5.4):

te')*<0>°> ( y \ > o < 0

Gmsequently, at * =  0 the function has a maximum, namely,

(y)x^ o=l
The graph of this function is given in Fig. 110.
Example 3. Test for maximum and minimum the function

y =  xQ

Solution. By the second method we find

1. y' =  6x6, y' =  6x6 =  0, x =  0,
2. y" =  30x*f (y")x s 0 =  0

Thus, the second method does not yield anything. Resorting to the first method, 
we get

(y%<o<°- (y')x> « > 0
Therefore, at x =  0 the function has a minimum (Fig. 111).
Example 4. Test for maximum and minimum the function

y =  (x— l)3
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Example 2. Test the following function for maximum and minimum: 

y= 1-x' 

Solution. I. Find the critical points: 
• 

y' =-4x3, -4.r=O, X=-0 

2. Determine the siin of the second derivative at x:::s: 0. 

y• = -I 2x2 , (y'')_~=o =--= 0 

It i5 thus impossible here to determine the character of the critical point 
hy means of the sign of the second derivative. 

y 
y 

0 X 

y = f-x" 

0 

Fig. 110 Fig. 111 

3. Investigate the character of the critical point by the first method (see 
Stc. 5.4): 

Consequently, at x = 0 the function has a maximum, namely, 

(Yh-:o = I 

The graph of this function is given in Fig. I IO. 
Example 3. Test for maximum and minimum the function 

Y=X6 

Solution. By the second method we find 

I . y' = 6xr,, y' = 6x& = 0, x = 0, 
2. y"=30x"', (y")x= 0 =0 

Thu~. the second method does not yield anything. Resorting to the first method, w, get 
(y')x < o < O, (y')x > o > O 

Therefore, at X= 0 the function has a minimum (Fig. 111). 
Example 4. Test for maximum and minimum the function 

Y=(x-l)a 
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170 Ch. 5. Investigating the Behaviour of Funclions

y * x }-3x+3

Solution. By the second method we find: 

y' =  3(jt— 1 )2, 3 (x— l )2 =  0, x = \  
y" =  6 (* - l ) ,  (lO *=i =  0 

Thus, the second method does not yield an answer. 
By the first method we get

(y )*< i > (V )>:> î > ®
Consequently, at x =  1 the function has neither 

a maximum nor a minimum (Fig. 112).

5.6 MAXIMUM AND MINIMUM OF A 
FUNCTION ON AN INTERVAL

Let a function y = f(x) be continuous 
on an interval [a, b]. Then the function 

on this interval will hâve a maximum (see Sec. 2.10). We will 
assume that on the given interval the function f  (x) has a finite 
number of critical points. If the maximum 
is reached within the interval [a, b], it is 
obvious that this value will be one of the 
maxima of the function (if there are several 
maxima), namely, the greatest maximum. But 
it may happen that the maximum value is 
reached at one of the end points of the in-
terval.

To summarize, then, on the interval [a, b] 
the function reaches its greatest value either 
at one of the end points of the interval, or 
at such an interior point as is the maximum 
point.

The same may be said about the minimum 
value of the function: it is attained either at 
one of the end points of the interval or at an 
interior point such that the latter is the mi-
nimum point.

From the foregoing we get the following 
rule: if it is required to find the maximum of 
a continuous function on an interval [a, b] , 
do the following:

1. Find ail maxima of the function on the 
interval.

2. Détermine the values of the function 
at the end points of the interval; that is, 
evaluate f(a) and f(b).

3. Of ail the values of the function obtai- 
ned choose the greatest; it will be the maxi-
mum value of the function on the interval.
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Solution. By the second method we find: 

y'=3(x-l)2 , 3(x-1)2 =0, x=l 
y" = 6 (x-1), (y")x= 1 = 0 g= (r-1) 3 

Thus, the second method does not yield an answer. 
By the first method we get 

(y')x< 1 > O, (y')x > 1 > O 

Consequently, at x = l the function has neither 
a maximum nor a minimum (Fig. 112). 

5.6 MAXIMUM AND MINIMUM Of, A 
FUNCTION ON AN INTERVAL 

Fig. 112 Let a function y = f (x) be continuous 
on an interval [a, b]. Then the function 

on this interval will have a maximum (seP. Sec. 2.10). We will 
assume that on the given interval the function f (x) has a finite 
number of critical points. If the maximum 
is reached within the interval [a, b], it is 
obvious that this value will be one of the 
maxima of the function (if there are several 
maxima), namely, the greatest maximum. But 
it may happen that the maximum value is 
reached at one of the end points of the in­
terval. 

To summarize, then, on the interval [a, b] 
the function reaches its greatest value either 
at one of the end points of the interval, or 
at such an interior point as is the maximum 
point. 

The same may be said about the minimum 
value of the function: it is attained either at 
one of the end points of the interval or at an 
interior point such that the latter is the mi­
nimum point. 

From the foregoing we get the following 
rule: if it is required to find the maximum of 
a continuous function on an interval [a, b], 
do the fallowing: 

1. Find all maxima of the function on the 
interval. 

2. Determine the values of the function 
at the end points of the interval; that is, 
evaluate f (a) and f (b). 

3. Of all the values of the function _obtai­
ned choose the greatest; it will be the maxi­
mum value of the function on the interval. 

l -f D 1 j 
z 

~----o-15 

Fig. 113 

X 
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5.6 Maximum and Minimum of a Function on an Interval 171

The minimum value of a function on an interval is found in 
similar fashion.

Example. Détermine the maximum and minimunUDf the function y =  x? — 3jc+3  

ou the interval — 3, .

Solution. 1. Find the maxima and minima of the function on the interval

y ’ — Sx2—3, 3x2— 3 =  0, x1= l t x2 = — 1, 
y" =  6x

(lien

(y")x=i =  6 > 0

llcuce, there is a minimum at the point x = \ :

(y) x = 1 =  1

I urthermore
f e V - i  = - 6 < 0  

(.onsequently, there is a maximum at the point x =  — 1:

(y)x=~ i =  5

2. Détermine the value of the function at the end points of the interval:

(y),= .3 . = ^ .  (y)x = - 3=  — is

Thus, the greatest value of this function on the interval — 3, -g-j is

(y)x= - 1  =  5
«ml the smallest value is

(y)x=-» =  ~  15

The graph of the function is shown in Fig. 113.

5.7 APPLY1NG THE THEORY OF MAXIMA AND MINIMA 
OF FUNCTIONS TO THE SOLUTION OF PROBLEMS

The theory o! maxima and minima is applied in the solution of 
muny problems of geometry, mechanics, and so forth. Let us 
rxamine a few.

Problem 1. The range R = OA (Fig. 114) of a shell (in empty 
space) fired with an initial velocity va from a gun inclined tothe 
horizon at an angle q> is determined by the formula

D  Vo sin 2q>

R — —

(g is the accélération of gravity). Détermine the angle <patwhich 
Ihe range R will be a maximum for a given initial velocity v„.

5.6 Maximum and Minimum of a Function ori an Interval 17 I 

The minimun1 value of a function on an interval is found in 
,irnilar fashion. 

Example. Determine the maximum and minimum4':>f the function y = x3 - 3x+3 

1111 the interval [- 3, ! ] . 
Solution. I. Find the maxima and minima of the function on the interval 

I- 3. ! J = 

1 ht'n 

y'=3x2-3, 3x2-3=0, x1 = I, x2 =- l, 
y"=6X 

(y")x=l = 6 > Q 

llc·nce, there is a minimum at the point x= I: 

(Y)x=I = I 
I· urthermore 

(y"}x:z-1=-6 < 0 

Consequently, there is a maximum at the point X=- I: 

(Y)x= -1 = 5 

2. Determine the value of the function at the end points of the interval: 

(y) x=: = ~, (Y)x=-a= - 15 

Thus, the greatest value of this function on the interval [- 3, ! ] is 

(Y)x= -1 = 5 
,111tf the smallest value is 

(Y)x=-a=-15 

The graph of the function is shown in Fig. 113. 

5.7 APPLYING THE THEORY OF MAXIMA AND MINIMA 
OF FUNCTIONS TO THE SOLUTION OF PROBLEMS 

The the<;>ry of maxima and minima is applied in the solution of 
many problems of geometry, mechanics, and so forth. Let us 
rxamine a few. 

Problem t. The range R = OA (Fig. 114) of a shell (in empty 
•,pace) fired with an initial velocity v0 from a gun inclined to the 
horizon at an angle q> is determined by the formula 

2 • 2 R = v0 sm q, 
g 

(JI is the acceleration of gravity). Determine the angle <pat which 
the range R will be a maximum for a given initial velocity v0 • 
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172 Ch. 5. Investigating lhe Behaviour of Functions

Solution. The quantity R is a function of the variable angle cp. 
Test this function for a maximum on the interval

dR
d(p

2vo cos 2<p . 2vo cos 2<p 

g ë
= 0;

critical value <p=-£-;

4i’p sin 2<pd2R
H a

Fig. 114

\dtp* / v =ji/4 -T <°
Hence, for the value <P =  --j- the range R has a maximum:

The values of the function R at the end points of the interval 
[O, -j]  are

( R ) i f = o =  0 , (R)<p =jx/2 =  0

Thus, the maximum obtained is.the sought-for greatest value of R. 
Problem 2. What should the dimensions of a cylinder be so 

that for a given volume v its total surface area 5 is a minimum?
Solution. Denoting by r the radius of the base of the cylinder 

and by h the altitude, we hâve
S =  2nra -f 2nrh

Since the volume of the cylinder is given, for a given r the 
quantity h is determined by the formula

v =  nr*h
whence

Substituting this expression of h into the formula for S, we hâve 

S =  2jir* +  2 j ir ^

or

S  = 2 +  j

Here v is given, so we hâve represented S as a function of a 
single independent variable r.

172 Ch. 5. lnvestiaating tlze Be/zuviour of Functions 

Solution. The quantity R is a function of the variable angle cp. 
Test this function for a maximum on the interval O ~ cp ~ ; : 

dR = 2v~ cos 2q> . 2v~ cos 2cp =- O· 
dq> g ' g , 

!J 

n 
critical value <p = 4 ; 

d2 R 4t•i sin 2cp 
-=------dq>2 g 

Fig. 114 
(

d2R) 4t•~ O 
d<p2 (J)=te/4 :z:: -g < 

Hence, for the value q> = : the range R has a maximum: 

v~ 
(R)cp=rc/4 = g 

The values of the function R at the end points of the interval 

[ 0, ; ] are 

(R)c,=o = 0, (R)cp =1112 = 0 

Thus, the maximum obtained is.the sought-for greatest value of R. 
Problem 2. What should the dimensions of a cylinder be so 

that for a given volume v its total surface area Sis a minimum? 
Solution. Denoting by r the radius of the base of the cylinder 

and by h the altitude, we have 

S = 2nr 2 + 2nrh 

Since the volume of the cylinder is given, for a iiven r the 
quantity h is determined by the formula 

v = nr2h 
whence 

or 

h-_!_ 
- 11,2 

Substituting this expression of h into the formula for S, we have 
V 

S = 2nr1 + 2:ir --, nr 

S= 2 ( nr'+ ~) 

Here v is given, so we have represented S as a function of a 
single independent variable , . 
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5.8 Testing a Function for max and min by Taylor*s Formula 173

Kind the minimum value of this function on the interval 
0 <  r <  <x>:

Thus, at the point r = rl the function 5 has a minimum. Notic- 
Ing that limS =  oo and lim S^oo, that is, that as r approaches

r -*• 0 r  -► or

zéro or infinity the surface S increases vvithout bound, we arrive 
ut the conclusion that at r =  r, the function 5 has a minimum.

Therefore, for the total surface area S of a cylinder to be a minimum 
for a given volume v, the altitude of the cylinder must be equal 
to its diameter.

5.8 TESTING A FUNCTION FOR MAXIMUM 
AND MINIMUM BY MEANS OF TAYLOR’S FORMULA

ln Sec. 5.5, it was noted that if at a certain point x = a we 
hâve f ' (a)= 0 and f"(a) = 0, then at this point there may be either 
a maximum or a minimum or neither. And it was noted that in 
th is instance the problem is solved by investigating by the first 
method; in other words, by testing the sign of the first dérivative 
on the left and on the right of the point x = a.

Now we will show that it is possible in this case to investigate 
by means of Taylor’s formula, which was derived in Sec. 4.6.

For greater generality, we assume that not only /"(*), but also 
ail dérivatives of the function f(x) up to the nth order inclusive 
vanish at x =  a:

Further, we assume that f(x) has continuous dérivatives up to 
the (n + l) th  order inclusive in the neighbourhood of the point
x = a.

/ '(a ) =  f ( a )  =  . . . = r ( a )  =  0 ( )

and
(a) ^=0

5.8 Testing a Function for max a,id min by Taylor's Formula 173 

Find the minimum value of this function on the interval 
0 < r < oo: 

dS ( v'• - = 2 2nr--) dr r2 
\ 

V VV 2nr-r.,_ = 0, , 1 = 2" 

( d2
~') = 2 (2n+ 2:) > 0 

dr Jr=r, r r=r, 

Thus, at the point r = r 1 the function S has a minimum. Notic­
ing that lim S = oo and lim S = oo, that is, that as r approaches 

,-o ,-~ 
zero or infinity the surface S increases without bound, we arrive 
al the conclusion that at r = r 1 the functi<;m S has a minimum. 

But if r= V;n, then 

V VV h =- = 2 - =2r nr2 2n 

Therefore, for the total surface area S of a cylinder to be a minimum 
for a given volume v, the altitude of the cylinder must be equal 
to its diameter. 

5.8 TESTING A FUNCTION FOR MAXIMUM 
AND MINIMUM BY MEANS OF TAYLOR'S FORMULA 

In Sec. 5.5, it was noted that if at a certain point x=a we 
have f' (a)= 0 and f" (a)= 0, then at this point there may be either 
a maximum or a minimum or neither. And it was noted that in 
this instance the problem is solved by investigating by the first 
method; in other words, by testing the sign of the first derivative 
on the left and on the right of the point x = a. 

Now we will show that it is possible in this case to investigate 
by means of Taylor's formula, which was derived in Sec. 4.6. 

For greater generality, we assume that not only f" (x), but also 
all derivatives of the function f (x) up to the nth order inclusive 
vanish at x = a: 

f' (a)= f" (a)= ... = f'n 1 (a)= 0 (I) 

and 
rn+u (a) =I= 0 

Further. we assume that f (x) has continuous derivatives up to 
the (n + I )th order inclusi\:'e in the neighbourhood of the point 
X=Q. 
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174 Ch. 5. Inuestigating the Behaviour of Functions

Write the Taylor formula for /(*), taking account of equalities (1):

f(x) = f(a) + ix- V * “ f«+»(l) (2)

where % is a number that lies between a and x.
Since /<n+1) (x) is continuous in the neighbourhood of the point 

a and / (n+1)(a) =̂ =0, there will be a small positive number h such 
that for any x that satisfies the inequality |x —a |< / t ,  it will be 
true that f (n+1)(x)^=0. And if / ‘"+1)(a )>  0, then at ail points of 
the interval (a—h, a + h) we will hâve /<n+1) (x) >  0; if /<n+1) (a) <  0, 
then at ail points of this interval we will hâve / (n+1) (x) <  0. 

Rewrite formula (2) in the form

f ( x ) - f ( a )  =  ̂ = ^ r + > > (  |) (2')

and consider various spécial cases.
Case 1. n is odd.
(a) Let f ln+1) (a) <  0. Then there will be an interval (a—h, a +  h) 

at ail points of which the (n + l) th  dérivative is négative. If x is 
a point of this interval, then |  likewise lies between a—h and a -\-h 
and, consequently, f itt+1)( t )<  0. Since n +  1 is an even number, 
(x—a)n+1> 0  for x=fca, and therefore the right side of formula 
(2') is négative.

Thus, for x ^ a  at ail points of the interval (a—h, a + h) we 
hâve

f ( x ) - f ( a ) <  0

and this means that at x = a the function has a maximum.
(b) Let Z*"*1* (a) >  0. Then we hâve f in+1> (|) > 0  for a sufficiently 

small value of h at ail points x of the interval (a—h, a +  h). 
Hence, the right side of formula (2') will be positive; in other 
words, for x^=a we will hâve the following at ail points in the 
given interval:

f ( x ) - f ( a ) >  0

and this means that at x = a the function has a minimum.
Case 2. n is even.
Then n +  I >s odd and the quantity (x—a)n+1 has different signs 

for x <  a and x >  a.
If h is sufficiently small in absolute value, then the (n + l) th  

dérivative retains the same sign at ail points of the interval 
(a—h, a + h) as at the point a. Thus, /(x)—f(a) has different 
signs for x <  a and x >  a. But this means that there is neither 
maximum nor minimum at x =  a.

It will be noted that if f ia+1) (a) >  0 when n is even, then 
/  (x) <  / (a) for x <  a and / (x) >  /  (a) for x >  a.
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Write the Taylor formula for f (x), taking account of equalities (I): 

f (X) = f (a)+ (~;_;!;tl fin+l) m (2) 

where ~ is a number that lies between a and x. 
Since f<n+i> (x) is continuous in the neighbourhood of the point 

a and f<n+u (a) =I= 0, there will be a small positive number h such 
that for any x that satisfies the inequality Ix-a I < h, it will be 
true that rn+I) (x) =I= o. And if fVi+I) (a) > 0, then at all points of 
the interval (a-h, a+ h) we will have f<n+t> (x) > 0; if f<n+1> (a) < 0, 
then at all points of this interval we will have f<n+u (x) < O. 

Rewrite formula (2) in the form 

f ( X) - f (a) = ( x(~ _;.>; ); 
1 

f<n + ll m (2') 

and consider various specia] cases. 
Case 1. n is odd. 
(a) Let pn+i> (a) < 0. Then there will be an interval (a-h, a+ h) 

at all points of which the (n + 1 )th derivative is negative. If x is 
a point of this interval, then ~ likewise lies between a-h and a+ h 
and, consequently, t<n+u(~) < 0. Since n+ I is an even number, 
(x-a)n+i > 0 for x =/:= a, and therefore the right side of formula 
(2') is negative. 

Thus, for x =I= a at all points of the interval (a-h, a+ h) we 
have 

f (x)-f (a)< 0 

and this means that at x=a the function has a maximum. 
(b) Let f<n+U (a)> 0. Then we have rn+l) (~) > 0 for a sufficiently 

small value of h at all points x of the interval (a-h, a+h). 
Hence, the right side of formula (2') will be positive; in other 
words, for x =I= a we will have the following at all points in the 
given interval: 

f (x)-f (a)> 0 

and this means that at x = a the function has a minimum. 
Case 2. n is even. 
Then n + l is odd and the quantity (x-a)n+i has different signs 

for x < a and x > a. 
If h is sufficiently small in absolute value, then the (n + l)th 

derivative retains the same sign at all points of the interval 
(a-h, a+ h) as at the point a. Thus, f (x)-f (a) has different 
signs for x < a and x > a. But this means that there is neither 
maximum nor minimum at x = a. 

It will be noted that if f<n+u (a) > 0 when n is even, then 
f (x) < f (a) for x < a and f (x) > f (a) for x > a. 
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5.9 Convexity and Concavity of a Curve 175

But if / ,n+1) (à) <  0 when n is even, then /  (x) >  /  (a) for x <  a and 
l (x )< f (a) for x > a .

The results obtained may be formulated as follows.
If at x = a we hâve

/ »  =  /» = . . .= /< » > ( « )  =  0
imd the first nonvanishing dérivative /<n+l> (a) is a dérivative of 
cven order, then at the point a

f(x) has a maximum if / ‘"+1>(a )< 0  
f(x) has a minimum if / (n+1>(a )>  0

But if the first nonvanishing dérivative /<n+1) (a) is a dérivative 
of odd order, then the function has neither maximum nor minimum 
at the point a. Here,

f (x ) increases if / (n+1) (a) >  0 
f(x) decreases if /<n+1>(a )<  0

Example. Test the following function for maximum and minimum:

/  (* )= *« — 4**+6x*— 4 x + 1 

Solution. We find the critical values of the function

f  (x) =  4x*— 12x*+ 12*—4 =  4 (x3—3x2 + 3 * — 1)

l'rom équation
4(*»—3xa+ 3 x — 1) =  0 

wc obtain the only critical point

x = l

(since this équation has only one real root).
Investigate the character of the critical point * = 1 :

f( jt)= 1 2 * * — 2 4 * + l2  =  0  for x =  1 

{ '"  (x) =  2Ax—24 =  0  f o r x = l
/iv  (x) =  24 >  0 for any x

Consequently, for x =  1 the function f(x) has a minimum.

5.9 CONVEXITY AND CONCAVITY OF A CURVE.
POINTS OF INFLECTION

In the plane, we consider a curve y = f  (x), which is the graph 
of a single-valued différentiable function f(x).

Définition 1. We say that a curve is convex upwards on the 
Interval (a, b) if ail points of the curve lie below any tangent to 
It on the interval.

We say that the curve is convex downwards on the interval (b, c) 
If ail points of the curve lie above any tangent to it on the 
interval.

5.9 Convexity and Concavity of a Curve 175 

But -if rn+I) (a) < 0 when n is even, then f (x) > f (a) for x < a and 
f (x) < f (a) for x > a. 

The results obtained may be formulated as follows. 
If at x=a we have • 

f' (a) = f" (a) = ... = f<n> (a)= 0 

nnd the first nonvanishing derivative rn+l) (a) is a derivative of 
,ven order, then at the point a 

f (x) has a maximum if rn+I) (a) < 0 
f (x) has a minimum if f<n+u (a) > 0 

But if the first nonvanishing derivative f<n+i> (a) is a derivative 
of odd order, then the function has neither maximum nor minimum 
ut the point a. Here, 

f (x) Increases if f<n+u (a) > 0 
f (x) decreases if f<n+u (a) < 0 

Example. Test the following function for maximum and 1ninimum: 

f (x)=x•-4x3+6x1 -4x+ 1 

Soluhon. We find the critical values of the function 
~ 

f' (x)=4x3- 12x2+ 12x-4=4 (x3-3x2 +3x-l) 
From equation 

4 (x3-3x2 +3x-1)=0 

we obtain the only critical point 

X=l 

(~I nee this equation has only one real root). 
Investigate the character of the critical point x = l: 

f"(x)=l2x2-24x+l2=0 for x=l 
f"' (X)=24x-24=0 for X= I 
/IV (x)=24 > 0 for any x 

Consequently, for x= I the function / (x) has a minimum. 

5.9 CONVEXITY AND CONCAVITY OF A CURVE. 
POINTS OF INFLECTION 

In the plane, we consider a curve y = f.(x), which is the graph 
of a single-valued differentiable function f (x). 

Definition 1. We say that a curve is convex upwards on the 
Interval (a, b) if all points of the curve lie below any tangent to 
H on the interval. 

We say that the curve is convex downwards on the interval (b, c) 
H all points of the curve lie above any tangent to it on the 
interval. 

s
Прямоугольник

s
Прямоугольник



176 Ch. 5. Investigating the Behaviour of Functions

We shall call a curve convex up, a convex curve, and a curve 
convex down, a concave curve.

Fig. 115 shows a curve convex on the interval (a, b) and con-
cave on the interval (b, c).

An important characteristic of the shape of a curve is its con- 
vexity or concavity. This section will be devoted to establishing

the characteristics by which, when 
investigating a function y = f{x), 
one can judge the convexity or 
concavity (direction of bulge) on 
various intervals.

We shall prove the following 
theorem.

Theorem 1. If  at ail points of 
an interval (a, b) the second dérivati-
ve of the function f(x) is négative, 
i. e., f" (x) <  0, the curve y = f (x) 
on this interval is convex upwards 
(the curve is convex).

Proof. In the interval (a, b) take an arbitrary point x = x9 
(Fig. 115) and draw a tangent to the curve at the point with 
abscissa x = x„. The theorem will be proved provided we establish 
that ail the points of the curve on the interval (a, b) lie below 
this tangent; that is, that the ordinate of any point of the curve 
ÿ =  /(x) is less than the ordinate y of the tangent line for one and 
the same value of x.

The équation of the curve is of the form

Fig. 115

y =f ( x ) ( 1)

But the équation of the tangent to the curve at the point 

V— f(Xo) =  f'(x*)(x—x0)

x =  x0 is of the form

or
ÿ = / ( * « ) + / '  K )  (x—*„) (2)

From équations (1) and (2) it follows that the différence between 
the ordinates of the curve and the tangent for the same value of x is

y — ÿ = f ( x ) —f(x0)— f  (xt) (x— x0)

Applying the Lagrange theorem to the différence f (x)—f(x„), 
we get _

y —ÿ  =  f'  (c) (*— *«)— / ' (*0) (x—xt)
(where c lies between x„ and x) or

y —ÿ =  [f (c)—f  (Jt,)) (x—x#)
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We shall call a curve convex up, a convex curve, and a curve 
convex down, a concave curve. 

Fig. 115 shows a curve convex on the interval (a, b) and con­
cave on the interval (b, c). 

An important characteristic of the shape of a curve is its con­
vexity or concavity. This section will be devoted to establishing 

· the characteristics by which, when 
Y investigating a function y = f (x), 

a 0 x, b 

Fig. 115 

one can judge the convexity or 
concavity (direction of bulge) on 
various intervals. 

We shall prove the following 
theorem. 

Theorem 1. / f at all points of 
c :r an interval (a, b) the second derivati-

ve of the function f (x) is negative, 
i. e., f"(x) < 0, the curve y=f (x) 
on this interval is convex upwa,rds 
(the curve is convex). 

Proof. In the interval (a, b) take an arbitrary point x = x, 
(Fig. 115) and draw a tangent to the curve at the point with 
abscissa x = x0 • The theorem will be proved provided we establish 
that all the points of the curve on the interval (a, b) lie below 
this tangent; that is, that the ordinate of any point of the curve 
y = f (x) is less than the ordinate y of the tangent line for one and 
the same value of x. . 

The equation of the curve is of the form 

Y = f (x) (1) 

But the equation of the tangent to the curve at the point 
x = x0 is of the form 

or 
y-f (x0 ) = f' (x0 ) (x-x0 ) 

y = f (x0 ) + f' (x0 ) (x-x0 ) (2) 

From equations (1) and (2) it follows that the difference between 
the ordinates of the curve and the tangent for the same value of x is 

y-y = f (x)-f (x0)-f' (x0 ) (x-x0 ) 

Applying the Lagrange theorem to the difference f(x)-f(x
0
), 

we get 
y-y = f' (c) (x-x0)-f' (x0 ) (x-x0 ) 

(where c lies between x0 and x) or 

y-y = [f' (c)-f' (x0)) (x-x0) 
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We again apply the Lagrange theorem to the expression in the 
square brackets; then

y —'ÿ= f"i.Q (c— xn){x—xt) (3)

(where ct lies between x0 and c).
Let us first examine the case where x >  x„. In this case, x# <

• ' c, <  c <  x; since
x x0 >  0, c—x# >  0 

und since, in addition, it is given that

r ( c ù <  o

Il follows from (3) that y —ÿ <  0.
Now let us consider the case where x <  x„. In this case x <  c <

• c, < x # and x —x„ <  0, c—x„ <  0, and since it is given that 
/"(c ,)<  0, it follows from (3) that

y - ÿ < 0

We hâve thus proved that every point of the curve lies below 
the tangent to the curve, no matter what values x and x# hâve on 
the interval (a, b). And this signifies that the curve is convex. 
The theorem is proved.

The following theorem is proved in similar fashion.
Theorem 1'. If  at ail points of the interval (b, c), the second 

dérivative of the function f (x) is positive, that is, f  (x) >  0, then

the curve y — f(x) on this interval is convex downwards (the curve 
is concave).

Note. The content of Theorems 1 and 1' may be illustrated 
geometrically. Consider the curve y — f(x), convex upwards on the 
Interval (a, b) (Fig. 116). The dérivative f  (x) is equal to the 
ttingent of the angle of inclination a of the tangent line at the 
point with abscissa x, or /'(x) =  tana. For this reason, /"(*) — 
— (tana)^. It /" (x )<  0 for ail x on the interval (a, b), this means
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We again apply the Lagrange theorem to the expression in the 
'<I uare brackets; then 

y-y = f" (cJ (c-x0) (x;-X0) (3) 

(where c1 lies between x0 and c). 
Let us first examine the case where x > x0 • In this case, x0 < 

• : c1 < c < x; since 
X-X0 > 0, c·-X0 > 0 

und since, in addition, it is given that 

r (c1) < 0 

It follows from (3) that y-y < 0. 
Now let us consider the case where x < x0 • In this case x < c < 

· c1 < x0 and x-x0 < 0, c-x0 < 0, and since it is given that 
/" (c1) < 0, it follows from (3) that 

y-y<O 

We have thus proved that every point of the cm-•e Hes below 
the tangent to the curve, no matter what values x and x0 have on 
the interval (a, b). And this signifies that the curve is convex. 
The theorem is proved. 

The following theorem is proved in similar fashion. 
Theorem 1 '. / f at all points of the i-nterval (b, c), the second 

,lrrivative of the function f (x) is positive, that is, f" (x) > 0, then 

y tJ 

.z 

C r 

Fig. 116 Fig. 117 

llu• curve y = f (x) on this interval is convex downwards (the curve 
,., concave). 

Note. The content of Theorems 1 and l' may be illustrated 
liCt'ometrically. Consider the curve y = f (x), convex upward!) on the 
111terval (a, b) (Fig. 116). The derivative f' (x) is equal to the 
tnngent of the angle of inclination a of the tangent line at the 
point with abscissa X, or f' (x) = tan a. For this reason, r (x) = 
-- (tan a);. It /" (x) < 0 for all x on the interval (a, b), this means 
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that tan a  decreases with increasing x. It is geometrically obvious 
that if tan a  decreases with increasing x , then the correspond ing 
curve is convex. Theorem 1 is an analytic proof of this fact.

Theorem Y is illustrated geometrically in similar fashion (Fig. 
117).

Example 1. Establish the intervals of convexity and concavity of a curve 
represented by the équation

y =  2 —x2

Solution. The second dérivative

y" = — 2 < 0

for ail values of x. Hence, the curve is everywhere convex upwards (Fig. 118). 
Example 2 . The curve is given by the équation

Since
y =  ex 

y" =  e* > 0

for ail values of x, the curve is therefore everywhere concave (bulges, or is 
convex downwards) (Fig. 119).

Example 3. A curve is defined by the équation

y = x?

y" < 0 for x < 0 and y" > 0  for x > 0. Hence, for x < 0 the curve is convex 
upwards, and for x >  0, convex down (Fig. 120).

Définition 2. The point that séparâtes the convex part of a 
continuons curve from the concave part is called the point of in-
fection of the curve.

In Figs. 120, 121 and 122 the points O, A and B are points of 
inflection.

It is obvious that at the point of inflection the tangent line, if 
it exists, cuts the curve, because on one side the curve lies under 
the tangent and on the other side, above it.

178 Ch. 5. Investigating the Behaviour of Functions 

that tan a, decreases with increasing x. It is geometrically obvious 
that if tan a, decreases with incre·asing x, then the corresponding 
curve is convex. Theorem I is an analytic proof of this fact. 

Theorem 1' is illustrated geometrically in similar fashion (Fig. 
117). 

Example I. Establish the intervals of convexity and concavity of a curve 
represented by the equation 

y=2-x2 

Solution. The second derivative 

y"=-2 < 0 

for all values of x. Hence, the curve is everywhere convex upwards (Fig. 118). 
Example 2. The curve is given by the equation 

Since 
g=eX 

y"=eX > 0 

for al I values of x, the curve is therefore everywhere concave (bulges, or is 
convex downwards) (Fig. 119). 

Example 3. A curve is defined by the. equation 

y=x3 
Since 

y"=6x. 

y" < 0 for x < 0 and y" > 0 for x > 0. Hence, for x < 0 the curve is convex 
upwards, and for x > 0, convex down (Fig. 120). 

y 
2 

Fig. 118 

y 

0 

Fig. 119 

g 

Fig. 120 

Definition 2. The point that separates the convex part of a 
continuous curve from the concave part is called the point of in­
flect ion of the curve. 

In Figs. 120, 121 and 122 the points 0, A and B are points of 
inflect ion. 

It is obvious that at the point of inflection the tangent line, if 
it exists, cuts the curve, because on one side the curve lies under 
the tangent and on the other side, above it. 
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Let us now establish sufficient conditions for a given point of 
a curve to be a point of inflection.

Theorem 2. Let a curve be defined by an équation y = f(x). If  
f" (a) =  0 or /" (a) does not exist and if the dérivative f  (x) changes

sign when passing through x = a, then the point of the curve with 
abscissa x =  a is the point of inflection.

Proof. (1) Let f" (x) <  0 for x < a  and /" (x )>  0 for x >  a.
Then for x <  a the curve is convex up and for x >  a, it is con- 

vex down. Hence, the point A of the curve with abscissa x =  a is  
a point of inflection (Fig. 121).

Fig. 122

(2) If f" (x) > 0  for x <  b and /" (x) < 0  for x >  b, then for x <  6 
the curve is convex down, and for x > 6 , it is convex up. Hence, 
the point B of the curve with abscissa x — b is a point of inflection 
(see Fig. 122).

Example 4. Find the points of inflection and détermine the intervals of con-
vexity and concavity of the curve

y  =  e~x* (Gaussian curve)

Solution. (1) Find the first and second dérivatives:

y ' =  — 2xe~x‘ 
y" = 2 e~ xt (2x2 — 1)

12*

5.9 Convexity and Concavity of a Curve 179 

Let us now establish sufficient conditions for a given point of 
n curve to be a point of inflection. 

Theorem 2. Let a curve be defined by an equation y = f (x). If 
f" (a)= 0 or f" (a) does. not exist and if tfte derivative f" (x) changes 

11 A 
y 

0 a 
(a) 

0 a 

(6) 
Fig. 121 

~ign when passing through x = a, then the point of the curve with 
abscissa x = a is the point of inflection. 

Proof. (1) Let f" (x) < 0 for x < a and f" (x) > 0 for x > a. 
Then for x < a the curve is convex up and for x > a, it is con­

vex down. Hence, the point A of the curve with abscissa x = a is 
a point of inflection (Fig. 121). 

!I 

0 6 

(a) 
.r 

!I 

0 

Fig. 122 

B 

b 

(h) 

(2) If f" (x) > 0 for x < b and f" (x) < 0 for x > b, then for x < b 
the curve is convex down, and for x > b, it is convex up. Hence, 
the point B of the curve with abscissa x = b is a point of inflection 
(see Fig. 122). 

Example 4. Find the points of inflection and determine the intervals of con­
vexity and concavity of the curve 

y=e-x" (Gaussian curve) 

Solution. (I) Find the first and second derivatives: 

y' =-2xe-x2 

y" =2e-x1 (2x2 - l) 
I :2 * 
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180 Ch. 5. I nvestigating the Behaviour of Functions

(2) The first and second dérivatives exist everywhere. Find the values of x 
for which y* =  0 :

2e~*‘ (2x2— 1) =  0

*i =
1

V~2
X2

1

(3) Investigate the values obtained:

for x < ------we hâve y" > 0
Y  2

for x > ------^=- we hâve y” < 0
\ n

The second dérivative changes sign when passing through the point Hence, 

forjct = ----- /=■ » there is a point of inflection on the curve; its coordinates

for x < —7=- we hâve y" < 0
Y  2

for x > - tL t  we hâve y" > 0
r 2

Thus, there is also a point of inflection on the curve for x2 — -,__; its coor-
V 2

(  1 — \
dinates are( - p = - ,e  2 ) .  Incidentally, the existence of the second point of

inflection follows directly from the symmetry of the curve about the y-axis.
(4) From the foregoing it follows that

for — o» < x <
V~2

the curve is concave:

f o r ----- < x < the curve is convex;
Y  2 Y  2

for - -L. < x < +  oo the curve is concave
Y  2

(5) From the expression of the first dérivative

y' — — 2xe~x*

it follows that
for x < 0  y' > 0 , the function increases, 
for x >  0  y' < 0 , the function decreases, 
for x =  0 y' =  0 .

At this point the function has a maximum, namely, y =  1. The foregoing ana-
lysis makes it easy to construct a graph of the curve (Fig. 123).

Example 5. Test the curve y =  x4 for points of inflection.
Solution. (1) Find the second dérivative:

(/*= \2x*
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(2) The first and second derivatives exist everywhere. Find the values of x 
for which v•=O: 

2e-x1 (2x2 - l) = 0 
I I 

X1 = - V2 • l.1 = V2 

(3) lnvestieate the values obtained: 

I 
for x < - Y 

2 
we have y" > 0 

I 
for x > -

11
r-n we have y" < 0 

r 2 

The second derivative changes sign when passing through the point x1• Hence, 

for x1 = -
11

) , there is a point of inflection on the curve; its coordinates 
f 2 

(

, I _ _!._\ 
are - JI 

2 
, e 2 ,J ; 

I 
for z < JI 

2 
we have y" < 0 

I 
for x > Y2 we have y" > 0 

I 
Thus, there is also a point of inflection on the curve for x2 = ~; its coor-

Y 2 

dinates are ( j 
2 

, e --½-) . Incidentally, the existence of the second point of 

inflection follows directly from the symmetry of the curve about the y-axis. 
(4) From the foregoing it follows that 

for - 00 < x < - /2 the curve is concave: 

f I I th . . or - Y 
2 

< x < Y 
2 

e curve 1s convex; 

for ; 
2 

< x < + 00 the curve is concave 

(5) From the expression of the first derivative 
y'=-2xe-x• 

it follows that 
for x < 0 y' > 0, the function increases, 
for ·x >·O ·y' < 0, the function decreases, 
for x=O y'=O. 

At this point the function has a maximum, namely, y =I. The foregoine ana­
lysis makes it easy to construct a graph of the curve (Fig. 123). 

Example 5. Test the curve y = x4 for points of inflection. 
Solution. (I) Find the second derivative: 

11" = l2x1 
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(2) Déterminé the points at which y” =  0:

12j c2 =  0 ,  j c — 0

(3) Investigate the value j c =  0  obtained: 
for x < 0  y" >  0 , the curve is concave,

for x >  0  y" > 0 , the curve is concave.
Thus, the curve lias no points of inflection (Fig. 124).

Fig. 125

Example 6. Investigate the following curve for points of inflection:
j_

{,=(*—u 3
Solution. (1) Find the first and second dérivatives:

1 - -  2 ——
y ‘= - $ ( x - 1) 3 ; y " = — g-(*— 1) 3

(2) The second dérivative does not vanish anywhere, but a t j c= l  it does not 
exist (yn=  ±  oo).

(3) Investigate the value x = \ :

for x < 1 y* > 0 , the curve is concave; 
for jc >  1 y" < 0 , the curve is convex.

Conseauently, at j c =  1 there is a point of inflection (1, 0 ).
It will be noted that for j c =  1 y ' =  oo; the curve at this point has a ver-

tical tangent (Fig. 125).

5.9 Convexity and Concavity of a Curt•e -----------
(2) Determine the points at which y" = 0: 

12x2 = 0, X== 0 

(3) Investigate the value x = 0 obtained: • 
for x < 0 y" > O, the curve is concave, 

, 
Y1 

y 

D 

Fig 123 

1 
vz 

-·• y= e .. 

for x > 0 y" > 0, the curve is concave. 
Thus, the curve has no ooints of inflection (Fig. 124). 

!I 

y 

I 

y•(.r-t)f 

Fig. 124 Fig. 125 

Example 8. Investigate the fol lowing curve for points of inflection: 
I 

Y=(x-1)3 

Solution. (1) Find the first and second derivatives: 

-~ 2 -.!. 
y'=i<x-1) 3 ; y"=-g(x-1) 3 
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(2) The second derivative does not vanish anywhere, but at x = l it does not 
exist (y" = ± 00 ). 

(3) Investigate the value x= I: 
for x < l 11" > 0, the curve is concave; 
for x > l 11" < 0, the curve is convex. 

Consequently, at X= I there is a point of inflection (I, 0). 
It will be noted that for x = I y' = oo; the curve at this point has a ver­

tical tangent (Fig. 125). 
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5.10 ASYMPTOTES

Very frequently one has to investigate the shape of a curve 
y — f (x) and, consequently, the type of variation of the correspon- 
ding function in the case of an unlimited increase (in absoiute 
value) of the abscissa or ordinate of a variable point of the curve, 
or of the abscissa and ordinate simultaneously. Here, an important 
spécial case is when the curve under study approaches a given line 
without bound as the variable point of the curve recedes to infinity.*

Définition. A straight line A is called an asymptote to a curve, 
if the distance 6 from the variable point M of the curve to this 
straight line approaches zéro as the point M recedes to infinity 
(Figs. 126 and 127).

In future we shall differentiate between vertical asymptotes (pa- 
rallel to the axis of ordinates) and inclined asymptotes (not paral- 
lel to the axis of ordinates).

1. Vertical asymptotes. From the définition of an asymptote it 
follows that if lim f(x) = oo or lim f(x) = oo or lim f  (x) = oo,

x -+ a +  0 x a - 0 x -* a

then the straight line x = a is an asymptote to the curve y = f(x)\ 
and, conversely, if the straight line x = a is an asymptote, then 
one of the foregoing equalities is fulfilled.

Consequently, to find vertical asymptotes one has to find values 
of x = a such that when they are approached by the function 
y — f(x) the latter approaches infinity. Then the straight linex =  a 
will be a vertical asymptote.

2
Example 1. The curve y =  - — g has a vertical asymptote x =  5, since y —► oo 

as x —*5 (Fig. 128).

* We say the variable point M moves along a curve to infinity if the dis-
tance of the point from the origin increases without bound.
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5.10 ASYMPTOTES 

Very frequently one has to investigate the shape of a curve 
y = f (x) and, consequently, the type of variation of the correspon­
ding function in the case of an unlimited increase (in absolute 
value) of the abscissa or ordinate of a variable point of the curve, 
or of the abscissa and ordinate simultaneously. Here, an important 
special case is when the curve under study approaches a given line 
without bound as the variable point of the curve recedes to infinity.* 

0 

Fig. 126 Fig. 127 

Definition. A straight line A is called an asymptote to a curve, 
if the distance 6 from the variable point M of the curve to this 
straight line approaches zero as the point M recedes to infinity 
(Figs. 126 and 127). 

In future we shall differentiate between vertical asymptotes (pa­
rallel to the axis of ordinates) and inclined asymptotes (not paral­
lel to the axis of ordinates). 

1. Vertical asymptotes. From the definition of an asymptote it 
follows that if lim f (x) = oo or Jim f (x) == oo or lim f (x) = oo, 

X-+a+O X ➔ a-0 X-+a 
then the straight line x == a is an asymptote to the curve y == f (x); 
and, converse I y, if the straight I ine x = a is an asymptote, then 
one of the foregoing equalities is fulfilled. 

Consequently, to find vertical asymptotes one has to find values 
of x = a such that when they are approached by the function 
y = f (x) the latter approaches infinity. Then the straight line x = a 
will be a vertical asymptote. 

Example 1. The curve y = ~
5 

has a vertical asymptote x = 5, since y ---t- 00 
x-

as X-+ 5 (Fig. 128). 

* We say the variable point M moves along a curve to infinity if the dis­
tance of the point from the origin increases without bound. 
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5.10 Asymptotes 183

Example 2 . The curve # =  tanjc has an 
Infinité number of vertical asymptotes

x
, 3jï 

X==±T - X

Tliis follows from the fact that tan x —► oo
, ., « ji 3ji 5 jt

h s  x approaches the values — , —  , - j -  , . . . ,

JT 3 JT 5 JT . 4
<»r— y  * -2~>----- 2~ ’ ••• <Fl«- 129>-

_1_

Example 3. The curve y =  e x has a verti*
_i_

rnl asymptote x =  Q, since lim ex  =  oo
-̂► + 0

(I ig. 130).

2. Inclined asymptotes. Let the curve y = f ( x) hâve an inclined 
H.symptote whose équation is

y = kx +  b (1)

Détermine the numbers k and b (Fig. 131). Let Af(x, y) be a point 
lying on the curve and N (x, ÿ), a point lying on the asymptote.

The length of MP is equal to the distance from the point M to 
the asymptote. It is given that

lim MP = 0 (2)
X -* + 00

Designating the angle of inclination of the asymptote to the x-axis 
by <p, we find from A  N MP that

NM = MP 
cos <p

5.10 Asymptotes 

Example 2. The curve y = tan x has an 
Infinite number of vertical asymptotes 

n 3n 5n 
Xz:±2' X=±2, X=±2, ••• 

Th is follows from the fact that tan x--+ oo 
n 3n 5n 

Ms x approaches the values 2 , T , T, ... , 
n 3n 5n . 

or - 2 , -2 • - 2 , ... (Fig. 129). 
I 

Example 3. The curve y =ex has a verti-
1 

rn I asymptote 

(F lg. l30). 

X=O, since lim ex= 00 
X➔ +O 

183 

y 

• 

D 

Fig. 128 

2. Inclined asymptotes. Let the curve y = f (x) have an inclined 
ttsymptote whose equation is 

y = kx+b (1) 

Determine the numbers k and b (Fig. 131). Let M (x, y) be a point 
lying on the curve and N (x, y), a point lying on the asymptote. 

g 

u=tanz 

:r 

Fig. 129 

The length of MP is equal to the distance from the point M to 
the asymptote. It is given that 

Jim MP=O (2) 

Designating the angle of inclination of the asymptote to the x-axis 
by q>, we find from 6. N MP that 

NM= MP 
cos q> 
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Since <p is a constant angle ^not equal to y  j , by virtue of the 
foregoing équation

lim NM = 0 (2')
X  -+  +  «

and, conversely, from (2') we get (2). But
NM = \ Q M- Q N \  = \ y - ÿ \  = \ f ( x ) - ( k x  + b)\

and (2') takes the form
lim [f(x)— kx—b] — 0 (3)

To summarize: if the straight line (1) is an asymptote, then (3) is 
satisfied, and conversely, if, k and b are constant, équation (3) is

satisfied, then the straight line y = kx + b is an asymptote. Let us 
now define k and b. Taking x outside the brackets in (3), we get

lim x [— 1 — k ——1 = 0
X  f  x  * 1

Since x —+ +  «>. the following équation must hold true:

* - + • L * *  J

For b constant, lim — =  0. Hence,

x  + » L x  J

A= lim tSH
x-++* x

or

(4)
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Since cp is a constant angle ( not equal to ; ) , by virtue of the 

foregoing equation 
lim NM=O (2') 

and, conversely, from (2') we get (2). But 

NM= I QM-QNI = IY-YI =If (x)-(kx+b)I 

and (2') takes the form 
lim [f (x)-kx-b] == 0 (3) 

To summarize: if the straight line ( 1) is an asymptote, then (3) "is 
satisfied, and conversely, if, k and b are constant, equation (3) is 

y g 

f 

I 

Fig. 130 Fig. 131 

satisfied, then the straight I ine y = kx + b is an asymptote. Let us 
now define k and b. Taking x outside the · brackets in (3), we get 

lim x [l(x)_k_!.] =0 
X ➔ +ac X X_ 

Since X-+ + oo, the following equation must hold true: 

lim [1 (x)_k_.!!...] = 0 
X-++aD X X 

For b constant, Jim !!... = 0. Hence, 
X ➔~ X 

lim [' (x)_k] = 0 
X ~ + ·:» % 

or 
k = lim f (x) 

X-++¥ X 
(4) 
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Knowing k, we find b from (3):

b =  Iun [/(*) —kxj (5)

Thus, if the straight line y = kx +  b is an asymptote, then k and 
b may be found from (4) and (5). Conversely, if the limits (4) 
and (5) exist, then (3) is fulfilled and the straight line y = kx + b 
is an asymptote. If even one of 
the limits (4) or (5) does not exist, V,
then the curve does not hâve an 
asymptote.

It sheuld be noted that we car- 
ried out our investigation as ap- 
plied to Fig. 131, as x —* +  oo, 
but ail the arguments hold also 
for the case x —>-—oo.

Example 4.
the curve

Find the asymptotes of 

x2 +  2jc— 1
y= A

Solution. (1) Look for vertical asym-
ptotes:

when x —► — 0  y  —► -f- oo 
when x —► +  0  y —► — oo

Therefore, the straight line x =  0 is a 
vertical asymptote.

(2) Look for inclined asymptotes:

, t y *2+2jc— 1
k =  lim — =  lim — s------ =*

x x2x-+±<x> ► ± oo Fig. 132

that is,

b =  lim [y — x] =  lim [ — 
ao X-+ ± oo L

k= \ 
+  2jc— 1

=  lim 
*-►±00

1 .. r*2 +  2jc— 1— Xal— ; — J
2

[ - i l -
or, finally,

b =  2

Therefore, the straight line
y = x + 2

Is an inclined asymptote to the given curve.
To investigate the mutual positions of a curve and an asymptote, let us 

consider the différence of the ordinates of the curve and the asymptote for
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Knowing k, we find b from (3): 

b= hm [f (x)-k~ 
,t· -++ Qg 

(5) 

Th us, if the straight I ine y = kx + b is an asymptote, then k and 
b may be found from (4) and (5). Conversely, if the limits (4) 
and (5) exist, then (3) is fulfilled and the straight line y = kx+ b 
is an asymptote. If even one of 
the limits (4) or (5) does not exist, 
then the curve does not have an 
asymptote. 

It sheuld be noted that we car-
ried out our investigation as ap­
plied to Fig. 131, as x--+-+oo, 
but all the arguments hold also 
for the case x--.-oo. 

Example 4. Find · the asymptotes of 
the curve 

x1 +2x- I 
Y=---­x 

Solution. (I) Look for vertical a!ym­
ptotes: 

when x--.-0 y ~+ 00 

when x --+- + 0 II --+ - 00 

Therefore, the straight line x = 0 is a 
vertical asymptote. 

(2) Look for inclined asymptotes: 

y . x2 +2x-l 
k= 11m -= ltm 2 == 

X-+±00 X X-+ ± 00 X 

·---= lim [1+~--;J =l 
X.+±GC X X 

that is, 
k=l 

y 

Fig. 132 

b If [ ] 1• [x1 +2x-l ] 1. [x2 +2x.--1-x'] = m y-x = 1m ---- x = 1m 
X-+±10 X-+±00 X X-+±QC X 

= lim [2-_!_] =2 
X-+±00 X 

or, finally, 
b=2 

Therefore, the straight line 

1~ ,m inclined asymptote to the given curve. 
To investigate the mutual positions of a curve and an asymptote, let us 

consider the difference of the ordi~ates of the curve and the asymptote for 
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186 Ch. 5. Investigating the Behauiour of Funclions

one and the same value of x:

f ! ± 2 £ z z l _ (jc+2) = - lX X I /  x

This différence is négative for x > 0 and positive for x < 0; and so for x >  0 
the curve lies below the asymptote, and for x < 0 it lies above the asymptote 
(Fig. 132).

Example 5. Find the asymptotes of the curve

y =  e~x sin x + x

Solution. (1) It is obvious that there are no vertical asymptotes.
(2) Look for inclined asymptotes:

fc= llm J U  lim !Zl£ÜL£±f=  un, [lll£îîLf+ ,] = i
* -► + < *  X  X -+  +  00 X  X —>  -h co L X  J

b =  lim [e~x sin x- j -x— x ] =  lim e - * s i n x = 0
X -+ + C D  X -+ + C C

Hence, the straight line y =  x is an inclined asymptote as x —>*+00 .
y

The given curve has no asymptote as x —►— oo. Indeed, the limit llm — 

u e~x
does not exist, since - ^- =—— sin x - \-1. (Here, the first term increases without 

bound as x —>■— oo and, therefore it has no limit.)

5.11 GENERAL PLAN FOR INVESTIGATING FUNCTIONS 
AND CONSTRUCTING GRAPHS

The term “investigation of a function” usually implies the 
finding of:

(1) the natural domain of the function;
(2) the discontinuities of the function;
(3) the intervals of increase and decrease of the function;
(4) the maximum point and the minimum point, and also the 

maximal and minimal values of the functions;
(5) the régions of convexity and concavity of the graph, and 

points of inflection;
(6) the asymptotes of the graph of the function.
The graph of the function is constructed on the basis of such 

an investigation (it is sometimes wise to plot certain éléments 
of the graph in the very process of investigation).

Note 1. If the function under investigation y = f(x) is even, 
that is, such that upon a change in sign of the argument the value 
of the function does not change, i.e., if

f ( - x )  = f(x)

then it is sufficient to investigate the function and construct its 
graph for positive values of the argument that lie within the 
domain of définition of the function. For négative values of the 
argument, the graph of the function is constructed on the grounds
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one and the same value of x: 

x
2
+2x-l _ (x+ 2) =-_!_ 

X X 

This difference is negative for x > 0 and positive for x < 0; and so for x > 0 
the curve lies below the asymptote, and for x < 0 it lies above the asymptote 
(Fig. 132). 

Example 5. Find the asymptotes of the curve 

y=e-xsinx+x 

Solution. (I) It is obvious that there are no vertical asymptotes. 
(2) Look for inclined asymptotes: 

k= Um}!_= lim e-xsinx+x= Um [e-xsinx+1]=1 
X➔ +ac X x-.+ctJ X X➔ +ctJ X 

b= lim [e-xsinx+x-x]= lim e-Xsinx=O 
X~+ctJ X➔+~ 

Hence, the straight line y = x is an inclined asymptote as x ~ + oo. 

The given curve has no asymptote as x ~---- oo. Indeed, the limit lim .Y.. 
X➔ -00 X 

does not exist, since JL.= e-x sin x+ I. (Here, the first term increases without 
X X 

bound as x ~- oo and, therefore it has no l(mit.) 

5.11 GENERAL PLAN FOR INVESTIGATING FUNCTIONS 
AND CONSTRUCTING GRAPHS 

The term "investigation of a function" usually implies the 
finding of: 

(1) the natural domain of the function; 
(2) the discontinuities of the function; 
(3) the int~rvals of increase and decrease of the function; 
(4) the maximum- point and the minimum point, and also the 

maximal and minimal values of the functions; 
(5) the regions of convexity and concavity of the graph, and 

points of inflection; 
(6) the asymptotes of the graph of the function. 
The graph of the function is constructed on the basis of such 

an investigation (it is sometimes wise to plot certain elements 
of the graph in the very process of investigation). 

Note t. If the function untler investigation y = f (x) is even, 
that is, such that upon a change in sign of the argument the value 
of the function does not change, i.e., if 

f (-x) = f (x) 

then it is sufficient to investigate the function and construct its 
graph for positive values of the argument that lie within the 
domain of definition of the function. For negative values of the 
argument, the graph of the function is constructed on the grounds 
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5.11 Investiga ting  Functtons and C onstructing  Graphs 187

(liât the graph of an even function is symmetric about the 
ordinate axis.

Example I. The function y =  x2 is even, since (— x ) 2 =  x 1 (see Fig. 5). 
Example 2. The function y =  cosx is even, since cos (— x )  =  cos x  (see 

lig. 16).

Note 2. If the function y = f(x ) is odd, that is, such that for 
iiny change in the argument the function changes sign, i.e., if

/ ( —*) =  — /(*)
llien it is sufficient to investigate this function in the case of 
positive values of the argument. The graph of an odd function is 
symmetric about the origin.

Example 3. The function y =  & is odd, since (— x)3 =  — x® (see Fig. 7). 
Example 4. The function y =  sin x  is odd, since sin (— x) =  — sin x (see 

l'iK. 15).

Note 3. Since a knowledge of certain properties of a function 
«llows us to judge of the other properties, it is sometimes advi- 
sable to choose the order of investigation on the basis of the 
poculiarities of the given function. For example, if we hâve found 
ont that the given function is continuous and différentiable and 
If we hâve found the maximum point and the minimum point of 
Ibis function, we hâve thus already determined also the range 
of increase and decrease of the function.

Example 5. Investigate the function

__  x
y ~ T + x *

niid construct its graph.
Solution. (1) The domain of the function is the interval — oo < * <  +  oo. 

Il will straightaway be noted that for x < 0  we hâve y < 0 , and for x > 0  we 
luivc y > 0.

(2 ) The function is everywhere continuous.
(3) Test the function for maximum and minimum: from the équation

1— x2 
y “ (l+x2)2-u

flnd the critical points:
xt — — 1, x2 =  1 

Investigate the character of the critical points:

for x < — 1 we hâve y' < 0 

for x > — 1 we hâve y f > 0

Hence, at x — — 1 the function has a minimum:

ÿm in =  (y)x  =  - l  =  — 0-5

I urthermore
for x < 1 we hâve y > 0 

for x > 1 we hâve y' < 0
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that the graph of an even function is symmetric about the 
ordinate axis. 

Example I. The function y = x2 is even, since (~ x)2 = x2 (see Fig. 5). 
Example 2. The function y = cos x is even, since cos (- x) = cos x (see 

, .. jJ.!, 16). 

Note 2. If the function y = f (x) is odd, that is, such that for 
uny change in the argument the function changes sign, i.e., if 

f (- x) = - f (x) 

then it is sufficient to investigate this function in the case of 
positive values of the argument. The graph of an odd function is 
~ymmetric about the origin. 

Example 3. The function y = x3 is odd, since (- x)3 = - x3 (see Fig. 7). 
Example 4. The function y = sin x is odd, since sin (- x) = - sin x (see 

t,'jg, 15). 

Note 3. Since a knowledge of certain properties of a function 
nllows us to judge of the other properties, it is sometimes advi­
sable to choose the order of investigation on the basis of the 
pt•culiarities of the given function. For example, if we have found 
out that the given function is continuous and differentiable and 
H we have found the maximum point and the minimum point of 
this function, we have thus already determined also the range 
of increase and decrease of the function. 

Example 5. Investigate the function 

X 

y= I+ x2 

nnd construct its graph. 
Solution. (I) The domain of the function is the interval - oo < x < + oo. 

II will straightaway be noted that for x < 0 we have y < 0, and for x > 0 we 
huve y > 0. 

(2) The function is everywhere continuous. 
(3) Test the function for maximum and minimum: from the equation 

l-x2 

y'=(l+x2)2 0 

Ond the critical points: 
X1=-l, X2=l 

Investigate the character of the critical points: 

for x < - I we have y' < 0 
for x > ---1 we have y' > 0 

Hence, at X=-1 the function has a minimum: 

Ymin = (Y)x = -1 = -0.5 
1 ·urthermore 

for x < I we have y· > 0 
for x > l we have y' < 0 
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188 Ch. 5. Jnvestigating the Behaviour of Functions

Hence, at x =  1 the function has a maximum:

ymax =  (y)x=i = 0 .5

(4) Détermine the domains of increase and decrease of the function: 

for — oo < x < — 1 we hâve y ' < 0 , the function decreases,
for — I < x < I we hâve y ' > 0 , the function increases,

for 1 < x < -}- oo we hâve y' < 0 , the function decreases.

(5) Détermine the domains of convexity 
the points of inflection: from the équation

2x (jc2 — 3) 
( 1 + jc2)3 = 

we get

and

y =

concavity of the curve and

* i  =  — Y 3, xa =  0, a*3= |/*3 

Investigating y* as a function of jc we find that

for — oo < jc < — Y $  y" < 0 , the curve is convex, 

for — < jc < 0  y" > 0 , the curve is concave,

for 0  < jc < Ÿ $ y" < 0 , the curve is convex, 

for y  3 < jc < +  oo y" > 0, the curve is concave.

Thus, the point with coordinates x =  — Y 3 ,  y =  — is a point of in-

flection; in exactly the same way, the points (0, 0) and  ̂ Y  3, ^ are

points of inflection.
(6) Détermine the asymptotes of the curve:

for j c —►-(-oo y —►O 
for jc —► — oo y —► 0

Consequently, the straight line y =  0  is the only inclined asymptote. The 
curve has no vertical asymptotes because the function does not approach 
infinity for a single finite value of j c.

The graph of the curve under study is given in Fig. 133. 
Example 6 . Investigate the function

y = y / 2 a x 2— jc3 (a > 0)

and construct its graph.
Solution. (1) The function is defined for a i l  values of j c, 
(2) The function is everywhere çontinuous.
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Hence, at x= I the function has a maximum: 

Y111ax=(Y)x=1=0.5 

(4) Determine the domains of increase and decrease of the function: 

br - 00 < x < -1 we have y' < 0, the function decreases, 
for -1 < x < I we have y' > 0, the function increases, 

for I < x < + 00 we have y' < 0, the function decreases. 

(5) Determine the domains of convexity and concavity of the curve and 
the points of in ftection: from the equation 

,, 2x (x2 - 3) 
y = (I +x2)3 =0 

we get 

xi=- va. x.=o, xa= Va 
I nvesti2ating y" as e function of x we find that 

for - 00 < x < - V3 y" < 0, the curve is convex, 

for - J/3 < x < 0 y" > 0, the curve is concave, 

for O < x < ya y" < 0, the curve is convex, 

for ya < X < + 00 y" > 0, the curve is concave. 

Thus, the point with coordinates x = - v3. 11 = - ~ 3 
is a point of in• 

( ·- J/3) flection; in exactly the same way, the points (0, 0) and V 3, -
4

- are 

points of intkction. 
(6) Determine the asymptotes of the curve: 

for X -+ + 00 y ---+ 0 
for X -+ - 00 g ---+ 0 

Consectuently, the straight line y = 0 is the only inclined asymptote. The 
c-urve has no vertical asymptotes because the function does not approach 
infinity for a single finite value of x. 

JI 

-VJ -f 

Fig. 133 

The graph of the curve under study is given in Fig. 133. 
Example 6. I nv('st igate the function 

Y= V 2ax2-x3 (a > 0) 

and construct its graph. 
Solution. (I) The function is defined for all values of x. 
(2) The function is everywhere continuous. 
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(3) T e s t th e  fu n c t io n  for m a x im u m  a n d  m in im u m :

, 4 a x — 3 jc *  4 a —Sx
y  — - -------  . , =  m

ax2 —  **)* z i /  x (2a—x )1

T h ere  is a d é r iv a t iv e  e v e ry w h e re  e x c e p t a t  th e  p o in t s

#1  =  0  a n d  # 2 =  2 a

In v e s tig a te  th e  l im i t in g  v a lu e s  of th e  d é r iv a tiv e  as x — ►— O a n d  as  x— ►+0: 

4 a — 3# 4 a — 3#

3 V x  Y ( 2 a —xf
=  — oo, llm  -  x --------------

3 y x y  (2a — # )2
= -f- oo

for x <  0  y' <  0 , a n d  for x >  0 y' >  0 .
H e n ce , a t  j c  =  0  th e  fu n c t io n  h a s  a  m in im u m . T h e  v a lu e  of th e  fu n c t io n  

at th is  p o in t  is zé ro .
N ow  in v e s t ig a te  th e  fu n c t io n  a t  th e  o th e r  c r i t i c a l  p o in t  x̂  =  2a As JC— *2a 

th e  d é r iv a tiv e  a lso  a p p ro a c h e s  in f in ity . H o w e v e r, in  th i s  c a se , fo r a il v a lu e s  
of x c lo se  to  2 a  (b o th  on  th e  r ig h t  an d  lef t of 2 a ) ,  th e  d é r iv a t iv e  is n é g a tiv e .  
T h e re fo re , a t  th is  p o in t  th e  fu n c t io n  h as  n e i th e r  a m a x im u m  n o r a  m in im u m . 
At a n d  a b o u t th e  p o in t  x 4 =  2 a  th e  fu n c tio n  d ecre ases; th e  ta n g e n t to  th e  c u rv e  
at th is  p o in t is v e r t ic a l .

4 a
A t x==-£ th e  d é r iv a t i v e  v a n is h e s .  L e t us in v e s tig a te  th e  c H a ra c te r of th is  

c r i t ic a l  p o in t .  E x a m in in g  th e  e x p re s s io n  of th e  first d é r iv a tiv e ,  w e n o te  th a t

for x < ^  y' > 0 , a n d  for x >  y  y' <  0

4 a
T h u s ,  a t  * = y  th e  fu n c t io n  h as  a m a x im u m :

ym»x=j

(4) O n th e  b a s is  of th i s  s tu d y  w e g e t th e  d o m a in s  o f iric re ase  a n d  d e c re ase  
ot th e  fu n c t io n :

fo r  —  oo <  x <  0  th e  fu n c t io n  d e c reases ,

4a
for 0  <  x < th e  fu n c t io n  in c re a se s ,

4a
for - = - < # <  +  oo th e  fu n c tio n  d e c rea se s.

(5) D é te rm in e  th e  d o m a in s  of c o n v e x ity  a n d  c o n c a v i ty  of th e  c u rv e  an d  
th e  p o in t s  of in f lec tio n : th e  sec on d  d é r iv a tiv e

9 # 3 ( 2 a — je )8

does n o t v a n is h  a t  a s in g le  p o in t .  Y e t th e re  a re  tw o  p o in ts  a t w h ic h  th e  se -
cond  d é r iv a t iv e  is d is c o n tin u o u s : JCi =  0  a n d  xt =  2a.

L et us in v e s t ig a te  th e  s ig n  of th e  se co n d  d é r iv a tiv e  n e a r  each  of th ese  
p o in ts . F o r  j c  < 0 w e h â v e  y" <  0 a n d  th e  c u rv e  is co n v ex  up ; fo r j c  > 0 w e 
h âv e  yT <  0  a n d  th e  c tirv e  is c o n v e x  u p . H e n c e , th e  p o in t  w ith  a b s c issa  # = 0  
is n o t  a p o in t  of in f le c tio n .
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(3) Test the function for maximum and minimum: 
, 4ax-3x1 4a-3x 

fl = 3 V<2ax1 -xl)1 3 'V JC (2a-JC)1 

There is a derivative everywhere except at the points 

x1 = 0 and x1 = 2a 

Investigate the limiting values of the derivative a~ x-+-0 and as .r--.+O: 
. 4a -3x 4a-3x 

llm V V = - 110, Um v;v = + C10 x.-.-o 3 X (2a-x)2 X ➔+ 0 3 X (2a-.r)1 

for x < 0 y' < 0, and for x > 0 y' > 0. 
Hence, at x=O the function has a minimum. The value of the function 

Rt this point is zero. 
Now investigate the function at the other critical point x1 = Za A$ -x---.. 2a 

the derivative abo approaches infinity. However, in this c·ase, for all values 
of x close to 2a (both on the right and left of 2a), the derivptive is negative. 
Therefore, at this point the function has neither a maximum nor a minimum. 
At and about the point Xi = 2a the function decreases; the tangent to the curve 
at this point is vertical. 

At JC= 4; the derivative vanishes. Let us investigate the character of this 

critical point. Examining the expression of the first derivative, we note that 
4a 4a 

for x < 3 y'· > 0, and for x > 3 11' < 0 

Thus, at JC= 4; the function ha!' a maximum: 

2 3/7 
Ymax= 3 a V 4 

(4) On the basis of this study we get the domains of increase and decrease 
ol the function: 

for - 00 < x < 0 the function decreases, 

for O < JC < 4; the function increases, 

for 4; < JC < + 110 the function decreases. 

(5) D~termine the domains of convexity and concavity of the curve and 
the points of inflection: the second derivative 

8a2 

y" = - -t----.-
- -

9x 1 (2a-x) 1 

doQS oot vanish at a single point. Yet there are two points at which the se­
cond derivative is discontinuous: x1 = 0 and x2 = 2a. 

Let us invflstigate the sign of the second derivative near each of these 
points. For x < 0 we have y" < 0 and the curve is convex up; for x > 0 we 
have ,,. < 0 and the et1rve is con•ex up. Hence, the point with abscissa Mc: 0 
is not a po_int of inflection. 
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190 Ch. 5. Investigating the Behaviour of Functions

F o r  x < 2a w e h â v e  y" < 0  a n d  th e  c u rv e  is co n v e x  up; fo r x >  2a we 
h â v e  y” >  0  a n d  th e  c u rv e  is c o n v ex  d o w n . H e n c e , th e  p o in t  (2a, 0) o n  th e  
c u rv e  is a  p o in t of in f le c t io n .

(6) D é te rm in e  th e  a sy m p to te s  of th e  c u rv e :

l/  2a x2
k =  lim  —  =  lim

 X  X ->±C D

6 =  lim  [ i/2 a x 2—jc3 +  =  lim
£-►±00

T h u s  th e  s t r a ig h t  lin e

- =  lim  
£-►±00 K?-—■

2ax2—j ^  +  jc3 2 a

£“*±00 \ / (2a x 2—x3)2 — x  y /^ 2 a x 2— x? +  x 2 ^

y =  — x +
2a

is a n in c lin e d  a s y m p to te  to  th e  c u rv e  y =  i/2 a x 2— T h e g r a p h  of th is  fo n c -
t io n  is sh o w n  in  F ig .  134.

y ,

X v y=ty2axz~x*

0

F ig . 134

F ig .

5.12 INVESTIGATING CURVES 
REPRESENTED PARAMETRI 

CALLY

Let a curve be given by 
the parametric équations

*=-»(<)
( i )

Evaluate the dérivatives

In this case the investigation 
and construction of the curve 
is carried out just as for the 
curve given by the équation

V =  f ( x )

* - * ' < 0  )
(2)

For those points of the curve near which it is the graph of a 
certain function y = f(x), evaluate the dérivative

dy _ ty' (i) 
dx <f' (t) ( 3 )

We find the values of the parameter t — , tk for which
at least one of the dérivatives <p' (t) or tp' (j) vanishes or becomes 
discontinuous. (We shall call these values of t critical values.)
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For x < 2a we have y" < 0 and the curve is convex up; for x > 2a we 
have y" > 0 and the curve is convex down. Hence, the point (2a, 0) on the 
curve is a point of inflection. 

(6) Determine the asymptotes of the curve: 

y . V 2ax2 -x3 . y2a 
k= lim - = bm --------= l1m -x-l=-1 

X➔±00 X X➔±OD X X➔±00 

. [V' j 2ax2-x3+x3 2a 
b= lim 2ax2-x3+x = lim 3 3 = -

X➔±<J> X4 ±<1> V (2ax2-rr•-x V 2ax2-x3+ x2 3 

Thus the straight line 
2a 

u=-x+a 

is an inclined asymptote to the curve y = ~/ 2ax2-x3. The graph of this func­
fion is shown in Fig. 134. 

Fig. 134 

Evaluate the derivatives 

5.12 INVESTIGATING CURVES 
REPRESENTED PARAMETRI-

CALLY • 

Let a curve be given by 
the parametric equations 

X =- «p (I) } 
Y='l'(t) (1) 

In this case the investigation 
and construction of the curve 
is carried out just as for the 
curve given by the equation 

:; = q,' (t) } 

:: ='I'' (I) 

y= f (x) 

(2) 

For those points of the curve near which it is the graph of a 
certain function y = f (x), evaluate the derivative 

dy '\f,' (t) 
dx = cp' (t) (3) 

We find the values of the parameter t-= 11 , 12 , ••• , tk for which 
at least one of the derivatives qi'(/) or ,p' (t) vanishes or becomes 
discontinuous. (We shall call these values of t critical values.) 
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5.12 1 nvestigating Curves Represented Parametrically 191

By formula (3), in each of the intervals (/„ /,); (t2, /,); . . .  ; 
tk) and hence, in each of the intervals (xlt xt)\ (xlt x3); 
(**_!, xk) [where x, =  <p(/,)], we détermine the sign of

in this way determining the domain oî increase and decrease.
This likewise enables us to détermine the character of points that 
correspond to the values of the parameter tlt tt , . . . ,  tk. Next, 
we compute

<Py _ ' l > ' ( 0 q > ' ( 0 — q>" ( 0 1 ' (<)
dx* ~  [(p ' ( /) ]*  W

From this formula, we détermine the direction of convexity of 
the curve at each point.

To find the asymptotes détermine those values of t, upon 
approach to which either x or y approaches infinity, and those 
values of t upon approach to which both x and y approach infi-
nity. Then carry out the investigation in the usual way.

The following examples will serve to illustrate some of the 
peculiarities that appear when investigating curves represented 
parametrically.

Example 1. Investigate the curvj given by the équation

X=aC0SH \  (a > 0) ' (1')y = a s m * t  f v ' '

Solution. The quantifies x and y are defined for ail values of t. But since 
he functions cos3 t and sin3 t are periodic, of a period 2ji, it is sufficient to 

consider the variation of the parameter t in the range from 0  to 2ji; here the 
nterval [—a, a] is the range of x and the interval [—a, a] is the range of 

y. Consequently, this curve has no asymptotes. Next, we find

t t  =  —3a cos2 / sin t 
at
dy
dt

— 3a sin2 / cos t
(2')

Jt 3jt
These dérivatives vanish at / = 0 ,  , ji, — , 2ji. We détermine

dy 3a sin2 t c o s t  . .
~r =  — ô------ t t —-—t  ~  —  t a n  tdx —3a cos2 / sin t

(3')

On the basis of (2 ') and (3') we compile the following table:
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By formula (3), in each of the intervals (t1 , t,,); (12 , 13 ); ••• , 

(tk-i, tk) and hence, in each of the intervals (x1 , x2); (x2 , x3); 

... ; (xk-i, xk) [where x,. = <p (t,.)], we determine the sign of t , in this way determining the domain ot increase and decrease. 

This likewise enables us to determine the character of points that 
correspond to the values of the parameter t1 , t2 , ••• , tk. Next, 
we compute 

~y ,i,· (t) q>' (t)-q>" (t) ,t,' (t) 
dx2 = [q>' (t)]3 (4) 

From this formula, we determine the direction of convexity of 
the curve at each point. 

To find the asymptotes determine those values of t, upon 
approach to which either x or y approaches infinity, and those 
values of t upon approach to which both x and y approach infi­
nity. Then carry out the investigation in the usual way. 

The following examples will serve to illustrate some of the 
peculiarities that appear when investigating curv~s represented 
parametrically. 

Example I. Investigate the curv~ given by the equation 

x = a c?s
8 

t ·} (a > O) ( 1 ') 
y== a s108 t 

Solution. Th~ quantities x and y are defined for all values of t. But since 
he functions cos3 t and sin3 t are periodic, of a period 2n:, it is sufficient to 

consider the variation of the parameter t in the range from O to 2.rt; here the 
nterval (-a, a] is the range of x and the interval [-:-a; a) is the range of 

y. Consequently, this curve has no asymptotes. Next, we find 

dx = -3a cos2 t sin t } 
dt 

:: =3a sin2 t cost 

These derivatives vanish at t = 0, ; , n, 3; , 2n. We determine 

dy = 3a sin1 t co~ t ~ _ tan t 
dx -3a cos2 t sm t 

On the basis of (2') and (3') we compile the following table: 

(2') 

(3') 
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192 Ch. 5. Jnvestigating the Behaviour of Functions

R a n g e  o f  t C o r r e s p o n d  in g  
r a n g e  o f  x

C o r r e s p o n d  in g  
r a n g e  o f  y

S ig n

o f  £  dx

T y p e  o f v a r i a -
t i o n  o f  y  a s  a  

f u n c t l o n  of 
x [ y = f  (*)]

0 < t a > x > 0 0  < y  < a — Decreases

-■ <  t < n 0  > x > —a a > y  >  0 + Increases

. . 3n
n < *  <~2 —a < x < 0 0  > y  >  —a — Decreases

Y  < *  < 231 0  < x < a —a <  y < 0 + Increases

From the table it follows that équations (!') denne two continuous functions 
of the type y =  f {x)f for O c / ^ j i  (see first two lines of the table),
for 7i < K 2?i 0 (see last two lines of the table). From (3') it follows that

lim
n
2

dy
dx

and

lim ~  
3 j t  d x

X~ * T

oo

At these points the tangent to the curve is vertical. We now find

dy_
dt /=o = 0, dy_

dt
= 0

t = 2jt

At these points the tangent to the curve is horizontal. We then find

d?y _  1
dx% 3a cos4 t sin t

Whence it follows that 

d*u
for 0  < / < n, ~ ~  > 0 , the curve is concave,

. (Pu
for 3i < / < 2j i , ^  < 0, the curve is convex.

On the basis of this investigation we can con- 
struct a curve (Fig. 135), which is called an 
astroid.

Example 2 . Construct a curve given by the 
following équations {folium of Descartes):

3 at
l-W* ’ y =

3 at*
I -H*

x = {a > 0 ) (n

192 Ch. 5. I nvestigatinf tht Behaviour of Functions 

Sign Type of varla-
Range of t Correspond i nr Corr~spond I nr 

of dJI 
tlon of IJ as a 

ran.ie of x range of y function of 
dx X [y=f (X)) 

n 
a>x>O O<y<a Decreases 0 < t <- -2 

n 
2 <t<n 0 > X >-a a>g>O + Increases 

Jn -a< X < 0 0 > y >-a Decreases n<t< 2 -
Jn 
2<t-<211 O<x<a -a<y<O + Increases 

From the table it follows that equations (I') denne two continuous functions 
of the type y = f (x), for O ~ t ~ n y ~ 0 (see first two I ines of the table), 
for n..; t..; 2n y..; 0 (see last two lines of the table). From (3') it follows that 

and 

1
. dy 
1m - = oo 

11 dx 
t-+-

2 

dy 
lim -= oo 

3tc dx 
X-t-2 

At these points th~ tangent to the curve is vertical. We now find 

dy I - 0 dy I - 0 dy I - 0 
dt t = o - ' dt t = n - ' dt t = 2:c -

At these __points the tangent to the curve is horizontal. We then find 

g ~y_ I 

Fig. 135 

dx1 - 3a cos" t sin t 

Whence it follows that 
d2y 

for O < t < n, dx2 > 0, the curve is concave, 

d2y 
z for n < t < 2n, dx2 < 0, the curve is convex. 

On the basis of this investigation we can con­
struct a curve (Fig. 135), which is called an 
astroid. 

Example 2. Construct a curve given by the 
following equations (folium of Descartes): 

3at 3at2 

%=1+1:t' g·=1+t3 (a>O) (l") 
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5.12 Investigating Curves Represented Porametrically 193

Solution. Both functions are defined for ail values of t except at / =  — 1, and

lim x =  lim +  oo, lim x =  — oo,
/->— î —o t -*--1 — o 1 4 -/4 /-►— î + o

Further note that

Find ~  and ^  : at at

Then we find

.. 3at* 
y =  lim

/ - > -1  - 0  l+ *
=  — 00 ,

•
lim y =  +  i 

/ -+ - 1+0

when t =  0 * = o . y =  0
when t —► +  oo x —► 0 , y ^ O
when t —►— oo x —► (), y  —*■ o

dx ^ ( ÿ - /s )  dy 3at (2—<*)
dt (1 + t 3)2 ’ dt (1 + t 3f

we get the following four critical values:

L =  - l .  ^2 =  0 ,
- P S

dy_
dy dt t (  2 - t3)
dx ~~ dx 

dt ■ ( * -

(2*)

0')

On the basis of formulas (T), (2"), and (3") we compile the following table:

R a n g e  o f  t C o r r e s p o n d  in g  
r a n g e  o f  x

C o r r e s p o n d  in g  
r a n g e  o f  y

S ig n

o f
d x

T y p e  o f  v a r i a -
t i o n  o f  y  a s  

a  f u n c t l o n  o f

—  00  < / <  — 1 0  < X  < + o o 0  > y > — oo _ Decreases
- 1  < * < o —  oo < X  < 0 +  oo  > y  > 0 — Decreases

0 < , < F J
0  < x <  a \ f 4 0  < y  <  a p ^ 2 + Increases

è < , < y ï
a ] / ï >  x > a \ / 2 a f/^2 < y <  4 — Decreases

V i <  t <  +  00 a \ / 2  > x >  0 >  y  > 0 + Increases

From (3*) we find
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Solution. Both functions are defined for al I values of t except at t = -l, and 

l. 1· 3at + 1· 1m x= 1m --"i= oo, 1m x==- oo, 
t➔ -1-0 t~-1-0 l+t t➔ -1+0 

l. 1· 3att I~ 1m y = 1m -
1 

- 3 = - oo, 1m y = + oo, 
t➔ -1-0 t➔-1-0 +t t➔ -1+0 

Further note that 

dx dy. 
Find dt and dt . 

when t=0 x==0, 
when t--+ + oo x--+ 0, 
when t --+- oo x-+ 0, 

For the parameter t we get the following four critical values: 

Then we find 

l 
11 =-I, 12 =0, l3 =v2• 

dy 
dy dt t (2-t3) 

dx = :; ~ 2 ( ~_,a) 

(2") 

(3") 

On the basis of formulas ( l ") 1 (2"), and (3") we compile the following table: 

Sign Type of varla-
Range of t Corresponding Corresponding 

of dy 
tlon of y as 

range of x range of JI a function of 
dx x[g=f (x)] 

-00 < t<-1 O<x<+oo O>y>-oo - Decreases 
-1 < t < 0 -oo<x<O +oo>y>O - Decreases 

I 
O<i< V2 v-O<x<a 4 v-O<y<a 2 + Increases 

1 :;-V2 < t < 2 v- v-a 4>x>a 2 v- v-a 2<y<a 4 - Decreases 

v-2<t<+oo v-a 2>x>0 v-a 4>y>0 + Increases 

(
dy \ - 0 
dx )t=O - ' 

(X=O) 
v=O 

(dy) - -00 
dx t=co -

(x=O) ,=o 
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194. Ch. 5. Investigat ing the Behaviour of Functions

Thus, the curve cuts the origin twice: with the tangent parallel to the x-axis 
and with the tangent parallel to the (/-axis. Further,

At this point the tangent to the curve is horizontal. Let us investigate the 
question of the existence of an asymptote:

k =  lim —
JC->+ CD X

lim 
/_*_ l-o

3a(2 ( 1 +  /3) 
3at (1 + / 3)

b =  lim (y— kx) =
x-*- + 30

lim
[ 3at2

o L1+'3 ( - 1 )
3at 1 —

l + t 3J ""

t-
lim
-1 -0

3ai (/ +  1)

1-H3
lim 

/-►-1-0
3at 

i —t +  t2 ~

Hence, the straight line y =  — x —a is an asymptote to a branch of the curve 
as x —► +  <».

Similarly we find

k =  lim — =  —1, b =  lim {y — kx) =  — a
30 * *->- 00

Thus, the straight line is also an asymptote to a branch of the curve as 
x —►— oo.

On the basis of this investigation we construct the curve (Fig. 136).
Some problems involving investigation of curves will again be discussed in 

Sec. 8.20 (“Singular Points of a Curve”).

Exercises on Chapter 5

Find the extrema of the functions:

1. y =  x2 — 2x +  3. Ans. ym\n =  2 at x = \ .  2 . — 2x2 +  3 x + l .  Ans.

ÿmax =  3 - at x = l ,  (/min= 1 at * =  3- 3- y  =  x3— 9x3 +  15x+3. Ans. y max= \ 0  

a t x = l ,  (/min =  — 22  at x =  5. 4. y — — x4 +  2x2. Ans. y max =  1 at x =  ± \ ,  
(/min =  0 at x =  0. 5. (/ =  * 4 — 8*2 +  2 . Ans. (/max =  2 at x =  0 , ymin =  —H at 
x — ± 2 . 6 . y =  3xb — 125X8-|-2160x. Ans. Maximum at x =  —4 and x =  3, mini-

194. Ch. 5. Investigating the Behaviour of Functions 

Thus, the curve cuts the origin twice: with the tanger1t parallel to the x-axis 
and with the tangent parallel to the y-axis. Further, 

.r 

Fig. 136 

(!!t_l_ = oo 

V2 
(

x==a V~) 
u=a V 2 

At this point the tangent to the curve is ver­
tical. 

At this point the tangent to the curve is horizontal. Let us investigate the 
question of the existence of an asymptote: 

k= lim l!...= lim 3at
2
(l+t:)=-l 

x_.+tn x ,~-1-o 3at (I +t ) 

b= lim (y-kx)= lim [ 13+a12,s-(-l) J3+att3]-= 
X-++ :I) .l'-+- 1- 0 

= Um l3at (t 1; I)] = lim 3at 2 = -a 
t-+-1-0 1+1 . t-+-1-0 1-t+t 

Hence, the straight line y = - x-a is an asymptote to a branch of the curve 
as x-++oo. 

Similarly we find 

k= Um JL=-1, b= Um (y-kx)=-a 
x_. - 7J X x_.- OD 

Thus, the straight line is also an asymptote to a branch of the curve as 
X--+--00. 

On the basis of this investigation we construct the curve (Fig. 136). 
Some problems involving investigation of curves will again be discussed in 

Sec. 8.20 ("Singular ~oints of a Curve"). 

Exercises on Chapter S 

Find the extrema of the functions: 
xs 

1. y=x2 -2x+3. Ans. Ymin=2 at x= 1. 2. u=3 -2x2 +3x+ 1. Ans. 
7 

Ymax= 3 at X=l, Ymin=l at x=3. 3. y=x3 -9x2 +15x+3. Ans. Ymax=I0 

at X=l, Ymin=-22 at x=5. 4. y=-x'+2x2• Ans. Ymax=l at X=±l, 
Ymin=O at x=O. 5. y=x4 -8x2 +2. Ans. Ymax=2 at x=O, Ymin=-14 at 
·X= ±2. 6. 11=3x6 - 125x3+2160x. Ans. Maximum at x=-4 and x=3, mini-
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