Lecture 12

INVESTIGATING THE BEHAVIOUR OF FUNCTIONS

STATEMENT OF THME PROBLEM

A study of the quantitative aspect of natural phenomena leads
o the establishment and study of functional relations between the
variables involved. If such a functional relationship can be expressed
nnalytically, that is, in the form of one or more formulas, we are
then in a position to investigate it with the tools of mathematical
nnalysis. For instance, a study of the flight of a shell in empty
space yields a formula that gives the dependence of the range R
upon the angle of elevation o and the initial velocity v,:

ve sin 2a

R=g

(¢ is the acceleration of gravity).

With this formula we can determine at what angle o the range
R will be greatest, or least, and what the conditions must be for
the range to increase as the angle a is increased, etc.

Let us consider another instance. Studies of oscillations of a load
on a spring (of a railway car or automobile) yielded a formula
showing how the deviation y of the load from a position of equi-
librium depends on the time ¢:

y=e~* (A cos ot + B sin wt)

I'or a given oscillatory system the quantities 2, A, B, o that enter
into this formula have a very definite meaning (they depend upon
the elasticity of the spring, the load, etc., but do not change
with time ¢) and for this reason are considered constant.

On the basis of this formula we can find out at what values of
{ the deviation y will increase with increasing ¢, how the maximum
deviation varies as a function of time, for what values of ¢ we
obscrve these maximum deviations, for what Yalues of ¢ we obtain
maximum velocities of motion of the load, and a number of other
things.

All these questions are embraced by the concept “investigating
the behaviour of a function”. It is obviously very difficult to de-
termine all these questions by calculating the values of a function
nt specific points (like we did in Chapter 2). The purpose of this
chapter is to establish more general techniques for investigating
the behaviour of functions.



s
Прямоугольник


INCREASE AND DECREASE OF A FUNCTION

Theorem. (1) If a function f(x), which has a derivative on an
interval [a, b], increases on this interval, then its derivative on
[a, b] is not negative, that is, ' (x)=>0.

(2) If the function f(x) is continuous on the interval |[a, b] and
is differentiable on (a, b), where ' (x) >0 for a < x < b, then the
function increases on the interval [a, b].

Proof. We start by proving the first part of the theorem. Let
f (x) increase on the interval [a, b]. Increase the argument x by Ax
and consider the ratio

f(x+A:;_f(x) (1)

Since f(x) is an increasing function,

f(x+Ax)>f(x) for Ax>0
d
- f(x4Ax) <f(x) for Ax<O

In both cases

f(x+Ax)—/f (x)
Ay >0 )
and consequently
lim [*FA0—=fH - ¢

/
Ax—>0 Ax

which means f' (x) >0, which is what we set out to prove. [If we
had f' (x) <0, then for sufficiently small values of Ax, ratio (1)
would be negative, but this would contradict relation (2).]

Let us now prove the second part of the theorem. Let ' (x) >0
for all values of x on the interval (a, b).
: Let] us consider any two values x, and x,, x, < x,, on the interval
a, b].

By Lagrange’'s mean-value theorem we have

f)—Fx)=F (B) (xa—x,), x <E<L<x,

It is given that ' (§) > 0, hence f (x,)—f (x,) > 0, and this means
that f(x) is an increasing function.

There is a similar theorem for a decreasing (differentiable)
function as well, namely:

If f (x) decreases on an interval [a, b], then [ (x)<<O on this
interval. If f'(x) <0 on (a, b), then f(x) decreases on [a, b]. [Of
course, we again assume that the function is continuous at all
points of [a, b] and is differentiable everywhere on (a, b).]
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Note. The foregoing theorem expresses the following geometric
fact. If on an interval [a, b] a function f(x) increases, then the
tangent to the curve y=f(x) at each point on this interval forms
an acute angle @ with the x-axis or (at certain points) is horizontal;
the tangent of this angle is not negative: f' (x) =tan ¢ =0 (Fig. 98a).
If the function f(x) decreases on the interval [a, b], then the angle
of inclination of the tangent line forms an obtuse angle (or, at some

i y?

Fig. 98

wints, the tangent line is horizontal): the tangent of this angle
s not positive (Fig. 98b). We can illustrate the second part of the
theorem in similar fashion. This theorem permits judging the increase
or decrease of a function by the sign of its derivative.

Example. Determine the domains of increase and decrease of the function
y=x4

Solution. The derivative is equal to
"=4x3

For x > 0 we have y’ > 0 and the function increases; for x < 0 we have y’ < 0
and the function decreases (Fig. 99).

MAXIMA AND MINIMA OF FUNCTIONS

Definition of a maximum. A function f(x) has a maximum at
the point x, if the value of the function f(x) at the point x, is
grcater than its values at all points of a certain interval containing
the point x,. In other words, the function f(x) has a maximum
when x=x, if f(x,+ Ax) < f(x,) for any Ax (positive and negative)
that are sufficiently small in absolute value.*

* This definition is sometimes formulated as follows: a function f(x) has
n maximum at x, if it is possible to find a neighbourhood (a, P) of x; (& < x; < B)
sich that for all Foints of this neighbourhood different from x; the inequality
[ (x) < f(xy) is fulfilled.
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For example, the function y=f(x), whose graph is given in
Fig. 100, has a maximum at x=x,.
Definition of a minimum. A function f(x) has a minimum at

X =x, if
f(xs+ Ax) > f(x,)

for any Ax (positive and negative) that are sufficiently small in
absolute value (Fig. 100).

For instance, the function y=x* considered at the end of the
preceding section (see Fig. 99) has a minimum for x=0, since
y=0 when x=0 and y > 0 for all other values of x.

g A yﬁ

y-=*

S|

0 .r a1 1, I, b T
Fig. 99 Fig. 100

In connection with the definitions of maximum and minimum,
note the following.

1. A function defined on an interval can reach maximum and
minimum values only for values of x that lie within the given
interval.

2. One should not think that the maximum and minimum of a
function are its respective largest and smallest values over a given
interval: at a point of maximum, a function has the largest value
only in comparison with those values that it has at all points
sufficiently close to the point of maximum, and the smallest value
only in comparison with those that it has at all points sufficiently
close to the minimum point.

To illustrate, take Fig. 101. Here is a function, defined on the
interval [a, b], which

at x=x, and x=x, has a maximum,

at x=x, and x=x, has a minimum,
but the minimum of the function at x=x, is greater than the
maximum of the function at x=ux,. At x=b, the value of the

function is greater than any maximum of the function on the interval
under consideration.
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The generic terms for maxima and minima of a function are
extremum (pl. extrema) or extreme values of the function.

To some extent, the extrema of a function and their positions
on the interval [a, b] characterize the variation of the function
versus changes in the argument.

Below we give a method for
finding extrema.

Theorem 1. (A necessary condi-
tion for the existence of an extre-
mum). If at a point x=x, a
differentiable function y=f(x)
has a maximum or minimum, its
derivative vanishes at this point:

' (x,) =0. | . 4 .
Proof. For definiteness, let us a I, I, I;I, b
assume that at the point x=x, Fig. 101

the function has a maximum.
Then, for sufficiently small (in absolute value) increments
Ax (Axs=0) we have

fx+Ax) < f(x,)
that is,
f (x4 Ax)—f (x,) <O
But in this case the sign of the ratio

f (i Ax)—f (%))
Ax

is determined by the sign of Ax, namely:

f(xy4-Ax) — [ (xy)
Ax

f(x14Ax)— ] (%)
Ax

>0 when Ax <0

< 0 when Ax>0

By the definition of a derivative we have
fl (xl) —_ lim f(xl_'_Ax)'—'f(xl)

Ax—>0 Ax

If f(x,) has a derivative at x=ux,, the limit on the right is
independent of how Ax approaches zero (remaining positive or ne-
gative).

But if Ax— 0 and remains negative, then

[ (x) =0

But if Ax— 0 and remains positive, then
[ (%) <0
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Since f’(x,) is a definite number that is independent of the way
in which Ax approaches zero, the latter two inequalities are con-
sistent only if

f(x,)=0

The proof is similar for the case of a minimum of a function.
Corresponding to this theorem is the following obvious geometric
fact: if at points of maximum and minimum, a function f(x) has
g A a derivative, the tangent line to the curve
y={[(x) at each point is parallel to the x-axis.
y=r’ Indeed, from the fact that f (x,)=tang=0,
where ¢ is the angle between the tangent line
and the x-axis, it follows that ¢ =0 (Fig. 100).
From Theorem | it follows immediately that
if for all considered values of the argument x the
7 > function f(x) has a derivative, then it can have
an extremum (maximum or minimum) only at
those values for which the derivative vanishes. The
converse does not hold: it cannot be said that
there definitely exists a maximum or minimum -for
every value at which the derivative vanishes. For
instance, in Fig. 100 we have a function for
Fig. 102 which the derivative at x=x; vanishes (the
tangent line is horizontal), yet the function at

this point is neither a maximum nor a minimum.
In exactly the same way, the function y=x® (Fig. 102) at x=0

has a derivative equal to zero:

(Y Vx=0= (3x%) 4o =0

but at this point the function has neither a maximum nor a mini-
mum. Indeed, no matter how close the point x is to O, we will
always have

x3<0 when x<0
and
x>0 when x>0

We have investigated the case where a function has a derivative
at all points on some closed interval. Now what about those points
at which there is no derivative? The following examples will show
that at these points there can only be a maximum or a minimum,
but there may not be either one or the other.

Example 1. The function y =] x| has no derivative at the point x=0 (at this
point the curve does not have a definite tangent line), but the function has a
minimum at this point: y=0 when x=0, whereas for any other point x diffe-
rent from zero we have y > 0 (Fig. 103).
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2
Example 2. The function y= (l——x3
2 1 _1

3/2
) has no derivative at x=0, since

-3
y'~~—(l—x3>2x becomes infinite at x==0, but the function has

n maximum at this point: f(0)=l;; f(x) <1 for x different from zero (Fig. 104).

Example 3. The function y=)/ x¥ has no derivative at x=0 (y' — o as
x — 0). At this point the function has neither a maximum nor a minimum:
[(0)==0, f(x) <0 for x <0, f(x) >0 for x >0 (Fig. 105).

Yy
1
y:/f—_rf}{
-1 0 1 I
Fig. 103 Fig. 104

Thus, a function can have an extremum only in two cases: either
at points where the derivative exists and is zero, or at points where
the derivative does not exist. ¥,

It must be noted that if the de-

rivative does not exist at some

~ 3
point (but exists at nearby points), y=vz

then at this point the derivative —
Is discontinuous. 0 z

The values of the argument for
which the derivative vanishes or
is discontinuous are called critical Fig. 105
points or critical values.

From what has been said it follows that not for every critical
value does a function have a maximum or a minimum. However,
if at some point the function attains a maximum or a minimum,
this point is definitely critical. And so to find the extrema of a
function do as follows: find all the critical points, and then, in-
vestigating separately each critical point, find out whether the
function will have a maximum or a minimum at that point, or
whether there will be neither maximum nor minimum.

Investigation of a function at critical points is based on the
following theorem.

Theorem 2. (Sufficient conditions for the existence of an extre-
mum). Let there be a function f(x) continuous on some interval
containing a critical point x, and differentiable at all points of the
interval (with the exception, possibly, of the point x, itself). If in
moving from left to right through this point the derivative changes
sign from plus to minus, then at x = x, the function has a maximum.
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But if in moving through the point x, from left to right the derivative
changes sign from minus to plus, the function has a minimum at
this point.
And so
f (x) >0 when x < x,
['(x) <0 when x > x,
then at x, the function has a maximum;
if (b) { f, (x) <0 when x < x,
f'(x) >0 when x > x,
then at x, the function has a minimum. Note here that the con-
ditions (a) or (b) must be fulfilled for all values of x that are
sufficiently close to x,, that is, at all points of some sufficiently
small neighbourhood of the critical point x,.

Proof. Let us first assume that the derivative changes sign from

plus to minus, in other words, that for all x sufficiently close to
x, we have

if (a) {

[’ (x) >0 when x < x,
[ (x) <0 when x > x;

Applying the Lagrange theorem to the difference f(x)—f (x,)
we have
f(x)—F(x) =F () (x—x,)

where § is a point lying between x and x,.
(1) Let x < x,; then
E<x, FF(®)>0, F(E)(x—x) <0
and, consequently,
f(x)—f(xl) <0

or
f(x) < F(xy) (1)
(2) Let x> x,; then
E§>x, () <O, ' (§)(x—x,) <O
and, consequently,

f(x)—F(x) <0
Flx) <F(x) @)

The relations (1) and (2) show that for all values of x sufficiently
close to x, the values of the function are less than those at x,.
Hence, the function f(x) has a maximum at the point x,.

or
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The second part of the theorem on the sufficient condition for
# minimum is proved in similar fashion.

Fig. 106 illustrates the meaning of Theorem 2.

At x=x,, suppose f'(x;)=0 and let the following inequalities
be fulfilled for all x sufficiently close to x;:

f" (x) >0 when x < x,
[ (x) <0 when x > x,

Then for x < x, the tangent to the curve forms with the x-axis
an acute angle, and the function increases, but for x > x, the
tangent forms with the x-axis an obtuse angle, and the function
decreases; at x=1x, the function passes from increasing to decrea-
sing values, which means it has a
maximum.

If at x, we have [ (x,)=0 and
for all values of x sufficiently close
lo x, the following inequalities
hold:

[’ (x) <0 when x < x,
[ (x) >0 when x > x,

then at x < x, the tangent to the Fig. 106
curve forms with the x-axis an
obtuse angle, the function decreases, and at x > x, the tangent
to the curve forms an acute angle, and the function increases.
At x =x, the function passes from decreasing to increasing values,
which means it has a minimum.

If at x=x, we have f' (x,) =0 and for all values of x sufficiently
close to x, the following inequalities hold:

9\

['(x) >0 when x< x,
f (x) >0 when x> x,

then the function increases both for x < x, and for x > x;. There-
fore, at x=x, the function has neither a maximum nor a mini-
mum. Such is the case with the function y=x® at x=0.

Indeed, the derivative y’ =3x2, hence,

(4)x=0=0
(y’)x<o > 0
(¥ )x>0>0

and this means that at x=0 the function has neither a maximum
nor a minimum (see Fig. 102).
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TESTING A DIFFERENTIABLE FUNCTION FOR MAXIMUM
AND MINIMUM WITH A FIRST DERIVATIVE

The preceding section permits us to formulate a rule for testing
a differentiable function, y={f(x), for maximum and minimum.

1. Find the first derivative of the function, i.e., f'(x).

2. Find the critical values of the argument x; to do this:

(a) equate the first derivative to zero and find the real roots of
the equation f’ (x) =0 obtained;

(b) find the values of x at which the derivative f’ (x) becomes
discontinuous.

3. Investigate the sign of the derivative on the left and right
of the critical point. Since the sign of the derivative remains
constant on the interval hetween two critical points, it is sufficient,
for investigating the sign of the derivative on the left and right
of, say, the critical point x, (Fig. 106), to determine the sign of
the derivative at the points @ and B(x, <a < x, x, <PB <ux,,
where x, and x, are the closest critical points).

4. Evaluate the function f(x) for every critical value of the
argument.

This gives us the following diagram of possible cases:

Signs of derivative f’ (x) when passing through
critical point x,: Character of critical point
x < Xy x=x, x> X
+ [ (x))=0 or is discon- — Maximum point
tinuous
—-— f' (x,)=0 or is disconti- + Minimum point
nuous
+ [’ (x,)=0 or is disconti- + Neither maximum nor
nuous minimum (function increa-
ses)
— F (x1)=0 or is disconti- —_ Neither maximum nor
_nuous minimum (function dec-
reases)

Example 1. Test the following function for maximum and minimum:
y =—'§1-—2x’+3x+ 1

Solution, 1. IFind the first derivative:
y' =x2—-4¢+43
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2. Find the real roots of the derivative:
x’—4x+3=0

Consequently, .
x=1, x,=3

The derivative is everywhere continuous and so there are no other critical
points.

3. Investigate the critical values and record the results in Fig. 107.
Investigate the first critical point x;=1. Since y’' =(x—1) (x—3),

for x <1 we have y'=(—)-(—) >0
for x> 1 we have y'=(+4+)-(—) <0

Thus, when passing (from left to right) through the value x, =1 the deri-
vative changes sign from plus to minus. Hence, at x=1 the function has a
maximum, namely,

7
(y)x=l=‘3—

Investigate the second critical point x,=3:

when x <3 we have y’'=(+)-(—) <0
when x >3 we have g'=(4):(4-)>0

Thus, when passing through the value x=3 the derivative changes sign
from minus to plus. Therefore, at x=3 the function has a minimum, namely:

y‘ (y)x=8=l
This investigation yields the graph of the
i function (Fig. 107).
LN
y=[z-1) Vzz
1 2
0 J J
/ .
.{..
Fig. 107 Fig. 108

Example 2. Test for maximum and minimum the function

y=@—1) )/ s
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Solution. 1. Find the first derivative:
y'=f/§§—|— 2(x—1) b5x—2

3%/x 3Yx
2. Find the critical values of the argument: (a) find the points at which
the derivative vanishes:

y,_5x—2_0 x—2
3‘;/? '

175
(b) find the points at which the derivative becomes discontinuous (in this
instance, it becomes infinite). Obviously, that point is :

xg=0

(It will be noted that for x,=0 the function is defined and continuous.)
There are no other critical points.
3. Investigate the character of the critical points obtained. Investigate the

point x1=-§-. Noting that
(y') 2 < 0' (y’) 2 > 0
x<— x>

] ]

we conclude that at x=% the function has a minimum. The value of the

function at the minimum point is
(2 3/4 3 i/T
®,..=(3-1) Va3V %

Investigate the second critical point x=0. Noting that
) <0>0 (#)gs <0

we conclude that at x=0 the function has a maximum, and (y)¢.o,=0. The
graph of the investigated function is shown in Fig. 108.

TESTING A FUNCTION FOR MAXIMUM
AND MINIMUM WITH A SECOND DERIVATIVE

Let the derivative of the function y=f(x) vanish at x=x,; we
have f' (x,)=0. Also, let the second derivative f”(x) exist and be
continuous in some neighbourhood of the point x,. Then the fol-
lowing theorem holds.

Theorem. Let f' (x,) =0; then at x=x, the function has a maxi-
mum if f"(x,) <0, and a minimum if f"(x,) > 0.

Proof. Let us first prove the first part of the theorem. Let

' (x,)=0 and ["(x,) <0

Since it is given that f"(x) is continuous in some small interval
about the point x=1x,, there will obviously be some small closed
interval about the point x=x,, at all points of which the second
derivative f”(x) will be negative.
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Since f”(x) is the first derivative of the first derivative, [ (x)=
(' (x))’, it follows from the condition (f'(x))’ <0 that [’ (x)
decreases on the closed interval containing x=x, (Sec. 5.2). But
["(x,)=0, and so on this interval we hate ' (x) > 0 when x < x,,
and when x > x, we have f’(x) <O0; in other words, the deriva-
tive f (x) changes sign from plus to minus when passing through
the point x=x,, and this means that at the point x, the function
f(x) has a maximum. The first part of the theorem is proved.

The second part of the theorem is proved in similar fashion:
if f"(x,) >0, then f"(x) >0 at all points of some closed interval
nbout the point x,, but then on this interval f(x)=(f"(x))’ >0
and, hence, f’(x) increases. Since f'(x,)=0 the derivative f’ (x)
changes sign from minus to plus when passing through the point
x,, i.e., the function f(x) has a minimum at x=x,.

If at the critical point f"(x,)=0, then at this point there may
be either a maximum or a minimum or neither maximum nor
minimum. In this case, investigate by the first method (see Sec. 5.4).

The scheme for investigating extrema with a second derivative
Is shown in the following table.

f’ (x4) f” (xq) Character of critical point
0 — Maximum point
0 + Minimum point
0 0 Unknown

Example 1. Examine the following function for maximum and minimum
y=2sin x4 cos 2x

Solution. Since the function is periodic with period 2m, it is sufficient to
Investilgate the function in the interval [0, 2n].
. Find the derivative:

Yy’ =2 cos x—2sin2x=2(cos x—2 sin x cos x) =2 cos x (1 —2 sin x)

2. Find the critical values of the argument:
2cos x (1 —2sin x)=0

T, o 5 3n
xl::F. xﬂ=?' x’=T' Xg="—

2
3. Find the second derivative:
y"=—2sin x—4 cos 2x
4. Investigate the character of each critical point:
. ——o.l 41 _
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. ) .
Hence, at the point Xy = we have a maximum:

1 | K]
(y)x_ f1 1 =2’—2_+—2—=—2—
==
Further,
(Y') g=—2-1441=2>0
x=—

And so at the point x,=£ we have a minimum:

2
@ ,=2-1—1=1
xX=—
5 2
At x,——-Tﬂ we have
., 1 !
W) _sm= 2y hg=—3<0
[}
on . .
Thus, at ¥y == the function has a maximum:
1 1 3
®, =23 t3=7

x,=—

[}

Finally,
(¥°) ga=—2(=1)—4(—1)=6>0

2
Consequently, at x‘,=E we have a minimum:

2
X=—

2
The graph of the function under investigation is shown in Fig. 109.

g{l y-Zsin.r +c052x
i
12
y
To| 7 san\ iz |2 3
3 gM255 g\ [ [ \
-’T
-2'5
|
Fig. 109

The following examples will show that if at a certain point x=x,
we have f'(x,)=0 and [’ (x,)=0, then at this point the function
f(x) can have either a maximum or a minimum or neither.
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Example 2. Test the following function for maximum and minimum:
y=1—xt
Solution. 1. Find the critical points: .
Yy =—4x3, —43=0, x=0

2. Determine the sign of the second derivative at x=0.
Yy =—12x% (¥")x_0=0

It is thus impossible here to determine the character of the eritical point
by means of the sign of the second derivative.

y
! y‘
—
0 I y=.r‘
y:,-‘z‘4
. ol
0 I
Fig. 110 Fig. 111

3.5111vestigate the character of the critical point by the first method (see
Sec. 5.4):

(y,)x<o>0| (y’)x>o <0

Consequently, at x=0 the function has a maximum, namely,
(y)x=0= 1

The graph of this function is given in Fig. 110.
Example 3. Test for maximum and minimum the function

y=x8
Solution. By the second method we find
1. y'=06x5, y =6x6-=0, x=0,
2. Y¥"=30x*, (Y")x=0=0

Thus, the second method does not yield anything. Resorting to the first method,
we get

(¥ )x<co <0 ()5 >0

Therefore, at x=0 the function has a minimum (Fig. 111).
Example 4. Test for maximum and minimum the function

y=(x—1)>
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(y,)x< 1 > 0'

Fig. 112 Let a function y=/f(

number of critical points. If the maximum
is reached within the interval [a, b], it is
obvious that this value will be one of the
maxima of the function (if there are several
maxima), namely, the greatest maximum. But
it may happen that the maximum value is
reached at one of the end points of the in-
terval.

To summarize, then, on the interval [a, 0]
the function reaches its greatest value either
at one of the end points of the interval, or
at such an interior point as is the maximum
point.

The same may be said about the minimum
value of the function: it is attained either at
one of the end points of the interval or at an
interior point such that the latter is the mi-
nimum point.

From the foregoing we get the following
rule: if it is required to find the maximum of
a continuous function on an interval [a, b],
do the following:

1. Find all maxima of the function on the
interval.

2. Determine the values of the function
at the end points of the interval; that is,
evaluate f(a) and f(b).

3. Of all the values of the function obtai-
ned choose the greatest; it will be the maxi-
mum value of the function on the interval.

Solution. By the second method we find:
y'=3(x—1)2, 3(x—12% =0, x=]I
"=6(—1),  (¥)x=1=0

Thus, the second method does not yield an answer.
By the first method we get

¥)y>,>0

Consequently, at x=1 the function has neither
a maximum nor a minimum (Fig. 112).

MAXIMUM AND MINIMUM OF A
FUNCTION ON AN INTERVAL

x) be continuous

on an interval [a, b]. Then the function
on this interval will have a maximum (see Sec. 2.10). We will
assume that on the given interval the function f(x) has a finite

y=x’-3x+d
Y

J

2-1 0 1

ol
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The minimum value of a function on an interval is found in
similar fashion.

Example. Determine the maximum and minimum<f the function y =x% — 3x--3

on the interval |—3, -2—

Solution. 1. Find the maxima and minima of the function on the interval

3
-» 2]

then

y' =3x2—3, 3x2—3=0, x; =1, x3=—1,
y"=6x

(¥)x=1=6 >0
lence, there is a minimum at the point x=1:
Wx=1=1
I'urthermore
(¥")x=-1=—6<0
Consequently, there is a maximum at the point x=— 1:
(Y)x=-1=5

2. Determine the value of the function at the end points of the interval:

15
(y) x:%_—_—s— v (Y)x=-3=—15

Thus, the greatest value of this function on the interval [— 3, i;—] is

(y)x=—1=5
and the smallest value is -
(Y)x=-3=—15
The graph of the function is shewn in Fig. 113.

APPLYING THE THEORY OF MAXIMA AND MINIMA
OF FUNCTIONS TO THE SOLUTION OF PROBLEMS

The theory of maxima and minima is applied in the solution of
many problems of geometry, mechanics, and so forth. Let us
examine a few.

Problem 1. The range R=0A (Fig. 114) of a shell (in empty
wpace) fired with an initial velocity v, from a gun inclined to the
horizon at an angle @ is determined by the formula

2 .
__ Vg Sin2¢
R g

(g is the acceleration of gravity). Determine the angle ¢ at which
the range R will be a maximum for a given initial velocity v,.


s
Прямоугольник

s
Прямоугольник


Solution. The quantity R is a function of the variable angle ¢.
Test this function for a maximum on the interval O<¢<%:

’

de g
critical value ¢ =%;

dR _ 2v5cos 29 . 2vjcos 29 0-
1

d®R __ 4vgsin 29
dg* — ¢
d?R 4u}
(W)qmnu: z <0
Hence, for the value <p=% the range R has a maximum:
2
(R)p=njt =2

The values of the function R at the end points of the interval

[O, %] are
(R)g=0=0, (R)g=n/2=0

Thus, the maximum obtained is.the sought-for greatest value of R.

Problem 2. What should the dimensions of a cylinder be so
that for a given volume v its total surface area S is a minimum?

Solution. Denoting by r the radius of the base of the cylinder
and by h the altitude, we have

S=2nr242nrh

Since the volume of the cylinder is given, for a given r the
quantity h is determined by the formula

v=mnr2h
whence
(l
h=1n

Substituting this expression of & into the formula for S, we have
v
S=2nr*4 2nr -3
or

S=2(nr’+f—)

Here v is given, so we have represented S as a function of a
single independent variable r.
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Find the minimum value of this function on the interval
0-{r <oo:

\n @

g—§-=2(2nr—;§)

.
2nr—:’7=0, r,= QU—n
d2s? 2v
(7)o, =2(2nt ), >0

Thus, at the point r =r, the function S has a minimum. Notic-
ing that limS=o00 and limS =o0, that is, that as r approaches

r—-0 r—->o

zero or infinity the surface S increases without bound, we arrive
al the conclusion that at r=r, the function S has a minimum.

But if r= i/ 2% then
U
== ]/— =2r

Therefore, for the total surface area S of a cylinder to be a minimum
for a given volume v, the altitude of the cylinder must be equal
to its diameter.

TESTING A FUNCTION FOR MAXIMUM
AND MINIMUM BY MEANS OF TAYLOR’'S FORMULA

In Sec. 5.5, it was noted that if at a certain point x=a we
have f'(a) =0 and f"(a) =0, then at this point there may be either
a maximum or a minimum or neither. And it was noted that in
this instance the problem is solved by investigating by the first
method; in other words, by testing the sign of the first derivative
on the left and on the right of the point x =a.

Now we will show that it is possible in this case to investigate
by means of Taylor's formula, which was derived in Sec. 4.6.

For greater generality, we assume that not only f”(x), but also
all derivatives of the function f(x) up to the nth order inclusive
vanish at x=a:

f@=f@=...=f"(@=0 (1)

and
fn+1 (q) 5= 0

Further, we assume that f(x) has continuous derivatives up to
the (n+ 1)th order inclusive in the neighbourhood of the point
X =a.
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Write the Taylor formula for f (x), taking account of equalities (1):
F(x) =F (@) +E=2 e @) @)

where § is a number that lies between a and x.

Since f*1(x) is continuous in the neighbourhood of the point
a and f"*V(a) 0, there will be a small positive number A such
that for any x that satisfies the inequality |x—a| << h, it will be
true that f»*v(x)£0. And if f**?Y(a) > 0, then at all points of
the interval (a—h, a4 h) we will have f**+V (x) > 0; if f**+1 (a) <O,
then at all points of this interval we will have f"**? (x) < 0.

Rewrite formula (2) in the form

F)—f (@ =S oo ) 2)

and consider various special cases.

Case 1. n is odd.

(a) Let f**1 (a) < 0. Then there will be an interval (a—h, a-+h)
at all points of which the (n+ 1)th derivative is negative. If xis
a point of this interval, then § likewise lies between a—h and a +h
and, consequently, f"'“’ () < 0. Since n-1 is an even number,
(x—a)"+1 >0 for xs%a, and therefore the right side of formula
(2’) is negative.

Thus, for xs4a at all points of the interval (a—h, a4 h) we
have

f(x)—F(a) <0

and this means that at x=a the function has a maximum.

(b) Let f*+V(a) > 0. Then we have f**1 (§) > 0 for a sufficiently
small value of A at all points x of the interval (e—h, a+h).
Hence, the right side of formula (2°) will be positive; in other
words, for x=~a we will have the following at all points in the

given interval:
f(x)—f(a)>0

and this means that at x =a the function has a minimum.

Case 2. n is even.

Then n+1 is odd and the quantity (x—a)”*? has different signs
for x<a and x > a.

If h is sufficiently small in absolute value, then the (n+- 1)th
derivative retains the same sign at all points of the interval
(@a—h, a+h) as at the point a. Thus, f(x)—f(a) has different
signs for x <a and x> a. But this means that there is neither
maximum nor minimum at x=a.

It will be noted that if f*"*V(a) >0 when n is even, then
f(x) < f(a) for x<a and f(x) > f(a) for x > a.
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But if f»+1 (a) < 0 when n iseven, then f (x) > f (a) for x < a and
[ (x) < f(a) for x> a.

The results obtained may be formulated as follows.

If at x=a we have *

ff@=f@=...=f"@=0

and the first nonvanishing derivative f"*1(q) is a derivative of
cven order, then at the point a

f(x) has a maximum if f"*+? (q) <0
f (x) has a minimum if f*+V(a) >0

But if the first nonvanishing derivative f**1(a) is a derivative
of odd order, then the function has neither maximum nor minimum
nt the point a. Here,

f (x) increases if f*+V (a) >0
f (x) decreases if f""*1¥(a) <0

Example. Test the following function for maximum and minimum:
f(x)=x4—4x3+6x2—4x41
Solution. We find the critical values of the function
' (x)=4x3—12x2+4 12x—4=4 (x*—3x24-3x—1)

I'rom equation
4(x®—3x243x—1)=0

we obtain the only critical point
x=1

(since this equation has only one real root).
Investigate the character of the critical point x=1:
ff(x)=12x2—24x4-12=0 for x=1
F'' (x) =24x—24=0 for x=1
fiv(x)=24 >0 for any x

Consequently, for x=1 the function f(x) has a minimum.

CONVEXITY AND CONCAVITY OF A CURVE.
POINTS OF INFLECTION

In the plane, we consider a curve y=f(x), which is the graph
of a single-valued differentiable function f(x).

Definition 1. We say that a curve is convex upwards on the
interval (a, b) if all points of the curve lie below any tangent to
it on the interval.

We say that the curve is convex downwards on the interval (b, c)

if all points of the curve lie above any tangent to it on the
interval,
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We shall call a curve convex up, a convex curve, and a curve
convex down, a concave curuve.

Fig. 115 shows a curve convex on the interval (a, b) and con-
cave on the interval (b, ¢).

An important characteristic of the shape of a curve is its con-
vexity or concavity. This section will be devoted to establishing
' the characteristics by which, when
9\ investigating a function y=f(x),
one can judge the convexity or
concavity (direction of bulge) on
- various intervals.

We shall prove the following
theorem.

Theorem 1. If at all points of
1D b ¢ > r an interval (a, b) the second derivati-
' ve of the function f(x) is negative,
i.e., f'(x) <0, the curve y=f(x)
Fig. 115 on this interval is convex upwards

(the curve is convex).

Proof. In the interval (a, b) take an arbitrary point x=x,
(Fig. 115) and draw a tangent to the curve at the point with
abscissa x=ux,. The theorem will be proved provided we establish
that all the points of the curve on the interval (a, b) lie below
this tangent; that is, that the ordinate of any point of the curve
y=7[(x) is less than the ordinate y of the tangent line for one and
the same value of «x. _

The equation of the curve is of the form

y=F(x) (1)

But the equation of the tangent to the curve at the point
x=x, is of the form

y—F () =F (x,) (x—x,)

B = f (xo) + f’ (xo) (x—xo) (2)

From equations (1) and (2) it follows that the difference between
the ordinates of the curve and the tangent for the same value of x is

y_.;/—.:f(x)—f(xo)—f, (xo) (x—xo)

Applying the Lagrange theorem to the difference f(x)—f(x,),
we get

HT—-—————
|

or

y—_l]: i' (C) (x_xo)—f’ (xo) (x_xo)
(where ¢ lies between x, and x) or

y—y=[f ©—F (x)] (x—x,)
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We again apply the Lagrange theorem to the expression in the
square brackets; then

y—y=F" () c—x) (x;—x,) 3

(where ¢, lies between x, and c).
Let us first examine the case where x> x,. In this case, x, <
<6 < e < x; since

X—x,>0, ¢—x,>0
und since, in addition, it is given that
f (c) <0

it follows from (3) that y—y < 0.

Now let us consider the case where x < x,. In thiscase x <c <
- ¢, <x, and x—x,<0, ¢c—x, <0, and since it is given that!
["(c,) <0, it follows from (3) that

y—y <0

We have thus proved that every point of the curve lies below
the tangent to the curve, no matter what values x and x, have on
the interval (a, b). And this signifies that the curve is convex.
The theorem is proved.

The following theorem is proved in similar fashion.

Theorem 1’. If at all points of the interval (b, c¢), the second
derivative of the function f(x) is positive, that is, f"(x) >0, then

“

oy
P at

a
'z I, Iy 0

Fig. 116 Fig. 117

the curve y=f(x) on this interval is convex downwards (the curve
{s concave).

Note. The content of Theorems 1 and 1° may be illustrated
geometrically. Consider the curve y=f(x), convex upwards on the
interval (a, b) (Fig. 116). The derivative f'(x) is equal to the
tangent of the angle of inclination @ of the tangent line at the
point with abscissa x, or f (x) =tana. For this reason, [’ (x)=
~ (tana),. It f"(x) <O for all x on the interval (a, b), this means
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that tana decreases with increasing x. It is geometrically obvious
that if tan o decreases with increasing x, then the corresponding
curve is convex. Theorem 1 is an analytic proof of this fact.

Theorem 1’ is illustrated geometrically in similar fashion (Fig.
117).

Example 1. Establish the intervals of convexity and concavity of a curve
represented by the equation

y=2—x2
Solution. The second derivative
y'=—2<0
for all values of x. Hence, the curve is everywhere convex upwards (Fig. 118).
Example 2. The curve is given by the equation

y=e*
Since
y'=e* >0

for all values of x, the curve is therefore everywhere concave (bulges, or is
convex downwards) (Fig. 119).
Example 3. A curve is defined by the equation

y=x
Since
y"=6x.

y" <0 for x<0 and y”" > 0 for x > 0. Hence, for x <0 the curve is convex
upwards, and for x > 0, convex down (Fig. 120).

L |

y=z’

y=e* 0 z

| y-2-? /

i .l -
Fig. 118 Fig. 119 Fig. 120

Definition 2. The point that separates the convex part of a
continuous curve from the concave part is called the point of in-
flection of the curve.

In Figs. 120, 121 and 122 the points O, A and B are points of
inflection.

It is obvious that at the point of inflection the tangent line, if
it exists, cuts the curve, because on one side the curve lies under
the tangent and on the other side, above it.


s
Прямоугольник


Let us now establish sufficient conditions for a given point of
n curve to be a point of inflection.

Theorem 2. Let a curve be defined by an equation y={f(x). If
["(@)=0 or f"(a) does not exist and if the derivative ["(x) changes

¥ A A
g4
A
0 a 0 e z
(@)
()
Fig. 121

sign when passing through x=a, then the point of the curve with
abscissa x=a is the point of inflection.
Proof. (1) Let f"(x) <0 for x<a and f"(x) >0 for x >a.
Then for x < a the curve is convex up and for x > a, it is con-
vex down. Hence, the point A of the curve with abscissa x=a is

a point of inflection (Fig. 121).

YA B YA B
. > > >
0 b z 0 6 z
@) ®
Fig. 122

@) If f"(x) >0 for x<band f"(x) <O for x>0, then for x < b
the curve is convex down, and for x > b, it is convex up. Hence,
the point B of the curve with abscissa x="5 is a point of inflection

(see Fig. 122).

Example 4. Find the points of inflection and determine the intervals of con-
vexity and concavity of the curve

y=e—** (Gaussian curve)

Solution. (1) Find the first and second derivatives:
Y =— 2xe—%*
y"=2e—** (2x2—1)
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(2) The first and second derivatives exist everywhere. Find the values of x
for which y*=0:
2e-%*(2x3—1)=0
] 1
= ———, A=
1 V—z 2 ﬁ
(3) Investigate the values obtained:
1
V2
1
for x > — —— we have y" <0
V2
The second derivative changes sign when passing through the point x,. Hence,
] . . . . . .
Vs , there is a point of inflection on the curve; its coordinates

‘ |
are(——ylfiz » e_?);

we have y* >0

for x < —

for xy =—

for x<-—l—we have y” <0

V2

1
for x > we have y” > 0
V2 ’
Thus, there is also a point of inflection on the curve for x,=-‘%: its coor-
-1
dinates are = ,e 2 ). Incidentally, the existence of the second point of

V2
inflection follows directly from the symmetry of the curve about the y-axis.
(4) From the foregoing it follows that

1 \
for —®@ < x < —-——2— the curve is concave;

for ——l_ <x< ;_ the curve is convex;
V2 V2
for l < x <+ o the curve is concave

V2
(5) From the expression of the first derivative
Y =—2xe—~**

it follows that

for x < 0 y’ > 0, the function increases,

for x >0y’ <0, the function decreases,

for x=0 y'=0.
At this point the function has a maximum, namely, y=1. The foregoing ana-
lysis makes it easy to construct a graph of the curve (Fig. 123).

Example 5. Test the curve y=x* for points of inflection.

Solution. (1) Find the second derivative:

v’ =12x3
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(2) Determine the points at which y”"=0:
12x2=0, x=0

(3) Investigate the value x=0 obtained: o
for x < 0 y” >0, the curve is concave,

y

_ 1L
14
Fig 123

for x >0 y” > 0, the curve is concave.
Thus, the curve has no points of inflection (Fig. 124).

g\
y# yg/_t-l)}
0//T i
0 —
Fig. 124 Fig. 125

Example 6. Investigate the following curve for points of inflection:
1

y=(x—17
Solution. (1) Find the first and second derivatives:
2 5
1 -3 2 e
y=50(6=1) % y=—gx—1 3

(2) The second derivative does not vanish anywhere, but at x=1 it does not
exist (y"= + ).
(3) Investigate the value x=1:
for x< 1 y" >0, the curve is concave;
for x>1 ¥" <0, the curve is convex.
Consequently, at x=1 there is 2 point of inflection (1, 0).

It will be noted that for x=1 y’' = o0; the curve at this point has a ver-
tical tangent (Fig. 125).
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5.10 ASYMPTOTES

Very frequently one has to investigate the shape of a curve
y=7[(x) and, consequently, the type of variation of the correspon-
ding function in the case of an unlimited increase (in absolute
value) of the abscissa or ordinate of a variable point of the curve,
or of the abscissa and ordinate simultaneously. Here, an important
special case is when the curve under study approaches a given line
without bound as the variable point of the curve recedes to infinity.*

Y
Mizy)
B ’
~
0 Tz
Fig. 126 Fig. 127

Definition. A straight line A is called an asymptofe to a curve,
if the distance & from the variable point M of the curve to this
straight line approaches zero as the point M recedes to infinity
(Figs. 126 and 127).

In future we shall differentiate between vertical asymptotes (pa-
rallel to the axis of ordinates) and inclined asymptotes (not paral-
lel to the axis of ordinates).

1. Vertical asymptotes. From the definition of an asymptote it

follows that if lim f(x)=o0 or lim f(x)=o0 or lim f(x)= oo,
x-+a+0 x-»>a-0 xX->a

then the straight line x =a is an asymptote to the curve y=f(x);
and, conversely, if the straight line x=a is an asymptote, then
one of the foregoing equalities is fulfilled.

Consequently, to find vertical asymptotes one has to find values
of x=a such that when they are approached by the function
y=f(x) the latter approaches infinity. Then the straight line x=a
will be a vertical asymptote.

xES has a vertical asymptote x=>5, since y — o

Example 1. The curve y=
as x— 5 (Fig. 128).

* We say the variable point M moves along a curve to infinity if the dis-
tance of the point from the origin increases without bound.
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Example 2. The curve y=tanx has an g
Infinite number of vertical asymptotes /

n 3n 5n
X = i-i, x==i-§—, x==i-§—,... ™
This follows from the fact that tan x — o
ns x approaches the values X ﬂ 5—“ 0
N pp 2 ] 2 ] 2 ) e e ey p—
n 3n 5n .
or — -E' » —‘T, —T’ (Flg 129)

1
Example 3. The curve y=e* has a verti-

1
cal asymptote x=0, since lim ex

x-++0
(Fig. 130).

2. Inclined asymptotes. Let the curve y=f(x) have an inclined
asymptote whose equation is

y=Fkx+b (1)

Determine the numbers £ and b (Fig. 131). Let M (x, y) be a point
lying on the curve and N (x, y), a point lying on the asymptote.

N

= o Fig. 128

ol
|
I

Fig. 129

The length of MP is equal to the distance from the point M to
the asymptote. It is given that

lim MP=0 )

X=>+®

Designating the angle of inclination of the asymptote to the x-axis
by ¢, we find from A NMP that

cos @
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Since ¢ is a constant angle (not equal to %), by virtue of ihe

foregoing equation
lim NM=0

X+t
and, conversely, from (2°) we get (2). But
NM=|QM—QN|=|y—g|=|f(x)—(kx+-b)|
and (2') takes the form
lim [f(x)—kx—b] =0

X ++®

@)

(3)

To summarize: if the straight line (1) is an asymptote, then (3) is
satisfied, and conversely, if, £ and b are constant, equation (3) is

9\

0 I

Fig. 130 Fig. 131

satisfied, then the straight line y =kx b is an asymptote. Let us
now define & and b. Taking x outside the brackets in (3), we get

lim x [’Lx’"—k—%_]=o

X —=>+®

Since x — + oo, the following equation must hold true:

lim [ig—k-—{—] =0

X >+ ®

For b constant, lim -g-=0. Hence,
X -+
lim ["x_"’_ ]=o

ar

(4)
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Knowing &, we find b from (3):
= lim [f (x) —kx] (5)

X—=>+®

Thus, if the straight line y=kx-4b is an asymptote, then % and

b may be found from (4) and (5). Conversely, if the limits (4)

and (5) exist, then (3) is fulfilled and the straight line y=Fkx+ &

is an asymptote. If evem one of

the limits (4) or (5) does not exist, y

then the curve does not have an

asymptote. !
It sheuld be noted that we car-

ried out our investigation as ap-

glied to Fig. 131, as x— 4 oo,

ut all the arguments hold also

for the case x ——o0. e

Example 4. Find ‘the asymptotes of
the curve

X3 -2x—1

y x
Solution. (1) Look for vertical asym-

ptotes: 0
when x ——0 y—+
when x —+4+0 y——oc0

Therefore, the straight line x=0 is a
vertical as')(lmptote.
(2) Look for inclined asymptotes:

x2+2x—l____

k= lm Y _ lim

X—>+ @ x X—> 4 ®

lim P 3_%J=1
x>+ ® X X
that is,

Fig. 132

b= lim [y—x]= lim
X—>+ @ X=> 4 ®

[x’+2x——-l_x]= lim [x2+2x—-l—x’]
X

X

or, finally,

Therefore, the straight line
y=x+2

is an inclined asymptote to the given curve.
To investigate the mutual positions of a curve and an asymptote, let us
consider the difference of the ordinates of the curve and the asymptote for
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one and the same value of x:
x24-2x—1 R
_x____(x_{_g)__.;

This difference is negative for x > 0 and positive for x < 0; and so for x >0
the curve lies below the asymptote, and for x < 0 it lies above the asymptote
(Fig. 132).

Example 5. Find the asymptotes of the curve

y=e-*sinx+x

Solution. (1) It is obvious that there are no vertical asymptotes.
(2) Look for inclined asymptotes:

k= lim Y— nim EESIREEX o [”—%’—’54_1]:1

X—> <+ a X X>+® X X—>+ ®
b= lim [e-*sinx4x—x]= lim e-*sinx=20
X+ © X—>+x

Hence, the straight line y=x is an inclined asymptote as x — - ¢0.

The given curve has no asymptote as x —— co. Indeed, the limit lim L

X—> -

-
does not exist, since %=e7 sin x4+ 1. (Here, the first term increases without

bound as x — — o and, therefore it has no limit.)

GENERAL PLAN FOR INVESTIGATING FUNCTIONS
AND CONSTRUCTING GRAPHS

The term “investigation of a function” usually implies the
finding of:

(1) the natural domain of the function;

(2) the discontinuities of the function;

(3) the intervals of increase and decrease of the function;

(4) the maximumr point and the minimum point, and also the
maximal and minimal values of the functions;

(9) the regions of convexity and concavity of the graph, and
points of inflection;

(6) the asymptotes of the graph of the function.

The graph of the function is constructed on the basis of such
an investigation (it is sometimes wise to plot certain elements
of the graph in the very process of investigation).

Note 1. If the function under investigation y=7f(x) is even,
that is, such that upon a change in sign of the argument the value
of the function does not change, i.e., if

f(—x)=f(x)

then it is sufficient to investigate the function and construct its
graph for positive values of the argument that lie within the
domain of definition of the function. For negative values of the
argument, the graph of the function is constructed on the grounds
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that the graph of an even function is symmetric about the
ordinate axis.
Example 1. The function y=x2? is even, since (2 x)?=x2 (see Fig. 5).

: Example 2. The function y=cosx is even, since cos(— x)=cosx (see
‘Ig. 16).

Note 2. If the function y=/f(x) is odd, that is, such that for
nny change in the argument the function changes sign, i.e., if

f(—x)=—F(x)

then it is sufficient to investigate this function in the case of
positive values of the argument. The graph of an odd function is
symmetric about the origin.
Example 3. The function y=x3 is odd, since (— x)3=— x® (see Fig. 7).
Example 4. The function y=sinx is odd, since sin(— x)=—sin x (see
I'ig. 15).

Note 3. Since a knowledge of certain properties of a function
nllows us to judge of the other properties, it is sometimes advi-
sable to choose the order of investigation on the basis of the
peculiarities of the given function. For example, if we have found
out that the given function is continuous and differentiable and
if we have found the maximum point and the minimum point of
this function, we have thus already determined also the range
of increase and decrease of the function.

Example 5. Investigate the function

__*
Yy=11 =

nnd construct its graph.

Solution. (1) The domain of the function is the interval — e < x < + oo.
It will straightaway be noted that for x < 0 we have y < 0, and for x > 0 we
have y > 0.

(2) The function is everywhere continuous.

(3) Test the function for maximum and minimum: from the equation

R —0

Y =TFar—
find the critical points:

xy=—1, x,=1

Investigate the character of the critical points:

for x < —1 we have y' <0
for x >—1 we have y' >0

Hence, at x=—1 the function has a minimum:

Ymin=(¥)x=-1=—0.5
l'urthermore
for x <1 we have y >0
for x > 1 we have ¢y’ < 0
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Hence, at x=1 the function has a maximum:
Ymax=(#)x=1=0.5
(4) Determine the domains of increase and decrease of the function:

for — o0 < x < —1 we have y’ < 0, the function decreases,
for —1 < x < | we have y’ > 0, the function increases,
for | < x < + o we have y’ < 0, the function decreases.

(5) Determine the domains of convexity and concavity of the curve and
the points of inflection: from the equation

n_ 2x(x2—3)

=Tap =0

y
we get

Xy =— V:?, x’=0. X3 = VS—
Investigating y” as a function of x we find that

for —o < x<—V¥3 y <0, the curve is convex,
for —¥V3<x<0 y” > 0, the curve is concave,
for0<x < V3 y” <0, the curve is convex,
for Y3<x<+4w y" > 0, the curve is concave.

Thus, the point with coordinates x=— ¥'3, y—_-——Ts- is a point of in-

flection; in exactly the same way, the points (0, 0) and (V?, %) are
points of inflection.
(6) Determine the asymptotes of the curve:
for x—4o0 y—0
for x——ow0 y—0

Consequently, the straight line y=0 is the only inclined asymptote. The

curve has no vertical asymptotes because the function does not approach
infinity for a single finite value of x.

s
J y= I+x3
0.5
Vi - —
0 O -
— [ 0 { %] £
-0.5
Fig. 133

The graph of the curve under study is given in Fig. 133.
Example 6. Investigate the function

y=3;/2ax2—x3 (@ >0)

and construct its graph.
Solution. (1) The function is defined for all values of x.
(2) The function is everywhere continuous.
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(3) Test the function for maximum and minimum:
' 4ax—3x2 — 4a—3x
3/ Qaxd—x 3} x(2a—x
There is a derivative everywhere except at the points
x;=0 and xy=2a

Investigate the limiting values of the derivative as x — —0 and as x—+-0:

lim 4a—3x =— ®, lim —3 =+ o

4a
x+-03}/ xy/ (2a—x)? x=>+0 SV;V@a—x)’

for x< 0y <0, and for x >0 y" > Q.

Hence, at x=0 the function has a minimum. The value of the function
at this point is zero.

Now investigate the function at the other critical point xa=2a As x—+ 2q
the derivative also approaches infinity. However, in this case, for all values
of x close to 2a (both on the right and left of 2a), the derivative is negative.
Therefore, at this point the function has neither a maximum nor a minimum.
At and about the point x,=2a the function decreases; the tangent to the curve
at this point is vertical.

At x=%a the derivative vanishes. Let us investigate the character of this

critical point. Examining the expression of the first derivative, we note that

forx<%a y" >0, and for .1:>4T;E ¥y <0

Thus, at x=%a the function has a maximum:
2 3
.‘/max=‘§ a ﬂ

(4) On the basis of this study we get the domains of increase and decrease
ol the function:

for — o < x < 0 the function decreases,

for 0< x< %a the function increases,

4a < x < 4+ o the function decreases.

3

(5) Determine the domains of convexity and concavity of the curve and
the points of inflection: the second derivative

8a?
4 s

9xT (2a— x)T

does not vanish at a single point. Yet there are two points at which the se-
cond derivative is discontinuous: x;, =0 and x,=2a.

Let us investigate the sign of the second derivative near each of these
oints. For x < 0 we have y”" < 0 and the curve is convex up; for x > 0 we
Eave ¥” < 0 and the curve is convex up. Hence, the poin{ with abscissa x=0
is not a point of inflection.

for

y'=—
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For x < 2a we have y” < 0 and the curve is convex up; for x > 2a we
have y” > 0 and the curve is convex down. Hence, the point (2a, 0) on the

curve is a point of inflection.
(6) Determine the asymptotes of the curve:

—
3 __. 3
k= lim £ = lim -‘{ﬁ;—"s= lim ]/2;"—1=—1

x>4mo X x>+ o x>4®

b= lim [V?ax’—-xa_}-xj—_- lim 2ax* —x+ 2a

X>+® X+ ® 31/ (2ax2_,x3)2_x V?axz_xa_l_ xa— 3

Thus the straight line

2a
y=—x+3

is an inclined asymptote to the curve y=3 2ax2—x3. The graph of this func-
ion is shown in Fig. 134.

YA
INVESTIGATING CURVES
y=VZazl-z? REPRESENTED  PARAMETRI-
CALLY .
Let a curve be given by
'\ the parametric equations
C —
4ag 12 I x=q ()
o1 N o 1)
y=1v ()

In this case the investigation
and construction of the curve
is carried out just as for the
curve given by the equation

Fig. 134
y=1F(x)
Evaluate the derivatives
d ’
=9 @
dy (2)
=V @

For those points of the curve near which it is the graph of a
certain function y=f(x), evaluate the derivative

dy _ ¢’ (f)
dx = 90 )
We find the values of the parameter ¢=¢,, ¢,, ..., ¢, for which

at least one of the derivatives ¢’ () or ¢’ (¢f) vanishes or becomes
discontinuous. (We shall call these values of ¢ critical values.)
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By formula (3), in each of the intervals (¢, ¢,); (£, &,); :
(¢x-1, %) and hence, in each of the intervals (x,, x,); (x,, x,);

oy (%g-1, %z) [where x;=o@(¢)], we determine the sign of
d—z, in this way determining the domain of increase and decrease.
This likewise enables us to determine the character of points that

correspond to the values of the parameter ¢, ¢,, ..., £,. Next,
we compute
Py _ YO )—9" ()Y (2) 4)
dx? l¢" (P

From this formula, we determine the direction of convexity of
the curve at each point.

To find the asymptotes determine those values of ¢, upon
approach to which either x or y approaches infinity, and those
values of ¢ upon approach to which both x and y approach infi-
nity. Then carry out the investigation in the usual way.

The following examples will serve to illustrate some of the
peculiarities that appear when investigating curves represented
parametrically.

Example 1. Investigate the curva given by the equation

x=acosdt \ ,
y=asind¢ } (@ >0) ()

Solution. The quantities x and y are defined for all values of ¢. But since
he functions cos3¢ and sin® ¢ are periodic, of a period 2n, it is sufficient to
consider the variation of the parameter ¢ in the range from 0 to 2x; here the
nterval [—a, a] is the range of x and the interval [—a,; a] is the range of
y. Consequently, this curve has no asymptotes. Next, we find

dx_ 24 i
7= 3acos?fsint )
dy -
3 =3a sin?? cos ¢
o s . L4 3n .
These derivatives vanish at ¢ =0, 5 n, 5 2n. We determine
d 3asin?f cos ¢ ,
dx~ —3acos?/sin¢ =—tant @)

On the basis of (2') and (3’) we compile the following table:
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c d c di sign | Type of varle:
rrespondin orresponain on o as a
Range of ¢ (:'angg of |x‘ rangg of y ¢ of ? functlcﬁl of
* x(y=/ (0]

0<t<% a>x>0 O<y<a — Decreases
%<t<n 0>x>—a a>y>0 + Increases

3n
n<t<? —a<x<0 0>y >—a — Decreases
3n
?(t<2ﬂ O<x<a —a< y<o + Increases

From the table it follows that equations (1’') denne two continuous functions
of the type y=/[(x), for O0<<t<<n y=0 (see first two lines of the table),
for n<t<2n y <O (see last two lines of the table). From (3') it follows that

lim gi/=o¢:o
; n dx
*7

and
lim ‘Q: )
X*T

At these points the tangent to the curve is vertical. We now find

dy | o %
a

l=0— dt t::r[_ ! E t=21’l=

At these points the tangent to the curve is horizontal. We then find

y dty 1
dx® ™ 3acosttsint

Whence it follows that

d2
for 0 <t < =, &_x% > 0, the curve is concave,
d%y .
I for n< t < 2nm, P < 0, the curve is convex.

On the basis of this investigation we can con-
struct a curve (Fig. 135), which is called an
astroid.

Example 2. Construct a curve given by the
following equations (folium of Descartes):

3at 3at?

146

Fig. 135

(@a>0) ("
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Solution. Both functions are defined for all values of ¢ except at t=—1, and

lim

t>-1-0

lim y=

t->-1-0

Further note that

dy .

dx
Fmd— and i

X =

lim 3at
t>+=-1-0 l+t3

lim 3at?
t>—1-0 142

when =0

when f —+4+o® x—0,
when f —>—w0 x—0,

I _p
dx_Ga (7—1

) dy 3at (2—B)
dt— (1+82 ° dt (1+8572

dt~ (1+8)

= -} oo, lim x=— o,
t+-=1+40
[ )
=-— 00, lim y=+4 oo,
t>-1+0
x=0, y=0
y—0
y—0

For the parameter ¢/ we get the following four critical values:

' ti=v2

Then we find

t1=‘—l, t2=0)
dy
dy dt
dx ~ dx
dt

t3==§7;.

t(2—13)

i(5)

(27)

(3"

On the basis of formulas (17), (2"), and (3") we compile the following table:

c ding C di sign |Type of s
n H]
Range of ¢ Tange of x © range of ¥ © | of 9% | a function of
4| xiy=f )]
—w <t <—1 O<x<+o 0>y>—m — | Decreases
—l<t<0 —wo<x<0 +o0o >y>0 — | Decreases
0<t<d— 0<x<a3;/Z 0<y<a?/2 + | Increases
)
l__<t<|/2 a3|/1>x>a?/2— a3;/2_<y<a3|/4 — | Decreases
2
3/2_<t<+oo a::/2—>x>0 a:VI>y>O 4+ | Increases
From (3") we find
dy ) _ dy _
(37,1=o =0 % t=w
x=0 x=0)
y=0 ¥y=0
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Thus, the curve cuts the origin twice: with the tangent parallel to the x-axis
and with the tangent parallel to the y-axis. Further,

YA dy —
(@) ==
x=¢13 4_
- y=a J'/?—
0 i
:\_t }his point the tangent to the curve is ver-
ical.

(%>,=f/; -0

|x=a ?/2_)
Fig. 136 y=a 4‘4/4‘

’

At this point the tangent to the curve is horizontal. Let us investigate the
question of the existence of an asymptote:
y I 3ar? (1413

k= lim ==

im = —1
x>+ao X {t--1-0 3at “+t3)

- 2
= lim (y—kn)= lm l 3at (_.1)_3_‘i] —

P xwt-0 [THE T TP
3at (t+1) . 3at
= lim — "= lim ——s=—a
t>=1=0 [ I4+68 | yo-i-0 !l —t42
Hence, the straight line y=— x—a is an asymptote to a branch of the curve
as x — -4 00.
Similarly we find
k= lim L——1, b= lim (y—kx)=—a
x+—-2 X X—>—-®

Thus, the straight line is also an asymptote to a branch of the curve as
X—r—oo.

On the basis of this investigation we construct the curve (Fig. 136).

Some problems involving investigation of curves will again be discussed in
Sec. 8.20 (“Singular Points of a Curve”).
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