
SOME THEOREMS ON DIFFERENTIABLE FUNCTIONS

4. A THEOREM ON THE ROOTS OF A DERIVATIVE
(ROLLE’S THEOREM)

Rolle’s Theorem. If  a function f (x) is continuous on an interval 
\a, b] and is différentiable at ail interior points of the interval, 
and vanishes [f (a) = f(b) = 0 ] at the end points x = a and x = b, 
then inside [a, b] there exists at least one point x = c, a < c < b ,  
at which the dérivative f  (x) vanishes, that is, f'(c) =  0 .*

Rroof. Since the function /(x) is continuous on the interval 
|«, b], it has a maximum M and a minimum m on that interval.

If M — m the function /(x) is constant, which means that for 
ail values of x it has a constant value /(x) =  /n. But then at any 
point of the interval / ' ( x) =  0 , and the theorem is proved.

Suppose M=£m. Then at least one of these numbers is not 
«•quai to zéro.

For the sake of definiteness, let us assume that M >  0 and that 
lhe function takes on its maximum value at x = c, so that 
/(c) =  Af. Let it be noted that, here, c is not equal either to a 
or to b, since it is given that /(a) =  0, f(b) = 0. Since f(c) is the 
maximum value of the function, it follows that f ( c+  Ax)—

f ( c ) ̂  0, both when Ax > 0 and when A x < 0 . Whence it fol-
lows that

when Ax >  0 (T)

/(c+ %2 ~~/(c) when A x < 0 (1*)

Since it is given in the theorem that the dérivative at x =  c 
exists, we get, upon passing to the limit as Ax—*0,

lim / (c+A*)—f (c) _  ^  ^  q when Ax >  0
a* -* o ax

lim =  f ’ (c) ^  0 when Ax <  0
Ax -*■ 0

But the relations / ' ( c ) < 0 and f  (c) ^ 0 are compatible only if 
f ‘(c) — 0. Consequently, there is a point c inside the interval 
|{i, 6] at which the dérivative f' (x) is equal to zéro.

The number c is called a root of the function <p(x) if <p(c) =  0.

Lecture 11
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The theorem about the roots of a dérivative has a simple géo-
métrie interprétation: if a continuous curve, which at each point 
has a tangent, intersects the x-axis at points with abscissas a 
and b, then on this curve there will be at least one point with 
abscissa c, a < c  <  b, at which the tangent is parallel to the 
x-axis.

Note 1. The theorem that has just been proved also holds for 
a différentiable function such that does not vanish at the end 
points of the interval [a, b\, but takes on equal values f(a) — f(b) 
(Fig. 92). The proof in this case is exactly the same as before.

Note 2 . If the function f(x) is such that the dérivative does 
not exist at ail points within the interval [a, b], the assertion 
of the theorem may prove erroneous (in this case there might 
not be a point c in the interval [a, b\, at which the dérivative 
f' (x) vanishes).

For example, the function

ÿ =  f(x) =  1 —V #

(Fig. 93) is continuous on the interval [— 1, 1] and vanishes at 
the end points of the interval, yet the dérivative

within the interval does not vanish. This is because there is a 
point x =  0  inside the interval at which the dérivative does not

exist (becomes infinité).
The graph shown in Fig. 94 is another 

instance of a function whose dérivative 
does not vanish in the interval [0 , 2 ].

The conditions of the Rolle theorem are 
not fulfilled for this function either, 
because at the point x = l  the function 

Fig. 94 has no dérivative.
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4.2 Lagrange’s 7 hcorem 135

4.2 THE MEAN-VALUE THEOREM (LAGRANGE’S THEOREM)

Lagrange’s Theorem. If  a function f(x) is continuous on the 
interval [a, b] and différentiable at ail interior points of the inter-
nai, there will be, within [a, b], at leasi one point c, a < c < b ,  
such that

f(b) — f(a) = f'{c)(b— a) (1)

Proof. Let us dénoté by Q the number  ̂ ^  that is, set:

Q= /J i ~  (2)

and let us consider the auxiliary function F (x) defined by the 
t*(| nation

F(x)=f(x)— f(a) — (x— a)Q (3)

What is the géométrie significance of the function F (x)? First 
write the équation of the chord AB (Fig. 95), taking into account

that its slope is ^ — Q an(t
that it passes through the point
(a, f (a)):

y— f(a) = Q(x— a)

wlience
y = f(a) + Q(x— a)

liut F (x) = f (x)— [f (a) + Q(x— a)]. 
ïlius, for each value of x, F (x) is 
c(|ual to the différence between the 
ordinates of the curve y = f(x) and 
t lie chord y = f(a) +  Q(x—a) for F‘8 - 95
points with the same abscissa.

It will readily be seen that F (x) is continuous on the interval 
|«, b], is différentiable within the interval, and vanishes at the 
«Mid points of the interval; in other words, F(a) = 0 , F(b) = 0 . 
Ilence, the Rolle theorem is applicable to the function F(x). By 
t h is theorem, there exists within the interval a point x =  c such
that

F’ (c) = 0
Mut

F’(x) = f ( x ) - Q
n ml so

F' (c) = f  (c)—Q =  0
wlience

Q = f'(c)
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136 Ch. 4. Some Theorems on Différentiable Functions

Substituting the value of Q in (2), we get
m ^ i = r ,c)

0 )

whence follows formula (1) directly. The theorem is thus proved.
See Fig. 95 for an explanation of the géométrie significance of 

the Lagrange theorem. From the figure it is immediately clear
that the quantity  ̂ j ; ~ 's the tangent of the angle of incli-
nation a  of the chord passing through the points A and B with 
abscissas a and b.

On the other hand, f'(c) is the tangent of the angle of inclina-
tion of the tangent line to the curve at the point with abscissa c. 
Thus, the géométrie significance of (T) or its équivalent (l)consists 
in the following: if at ail points of the arc AB there is a tangent 
line, then there will be, on this arc, a point C between A and B 
at which the tangent is parallel to the chord connecting points A 
and B.

Now note the following. Since the value of c satisfies the con-
dition a < c < b ,  it follows that c — a < b  — a, or

c — a =  0 (b — a)

where 0 is a certain number between 0  and 1 , that is,

But then
0 <  0 <  1 

c = a + Q(b — a)

and formula (1) may be written as follows:
f ( b ) - f (a )  = ( b - a ) f ' [ a  +  Q(b-a)],  0 <  0 <  1 ( ")

4.3 THE GENERALIZED MEAN-VALUE THEOREM 
(CAUCHY’S THEOREM)

Cauchy’s Theorem. If  f (x) and <p (*) are two functions continuous 
on an interval [a, b] and différentiable within it, and <p' (jc) does 
not vanish anywhere inside the interval, there will be, in [a, b], 
a point x = c, a < c < b ,  such that

f ( b ) - H a )  f  (c) 
f  (b)— <p (fl) <p'(c)

Proof. Let us define the number Q by the équation
f ( b ) - f ( a )

W <t(b)— <?(a) W

It will be noted that qy (b)—ç(a)=^=0, since otherwue <p (b) would 
be equal to q> (a), and then, by the Rolle theorem, the dérivative
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4.4 Evaluating Indeterminate Forms of the Type 137

(x) would vanish in the interval; but this contradicts the sta- 
tement of the theorem.

Let us construct an auxiliary functioiî

F (x) = f (x)— f  (a)— Q [<p (x) —<p (a)]

It is obvious that F(a) = 0  and F(b) = 0  (this follows from the 
définition of the function F (x) and the définition of the numberQ). 
Noting that the function F (x) satisfies ail the hypothèses of the 
Rolle theorem on the interval [a, b], we conclude that there exists 
between a and b a value x = c ( a < c < b )  such that F'(c) = 0. 
But F' (x) =  f  (x)—Q<p' (x), hence

F'(c) = r(c)-<to' (c)  = 0
whence

Substituting the value of Q into (2) we get (1).
Note. The Cauchy theorem cannot be proved (as it might appear 

at first glance) by applying the Lagrange theorem to the nume- 
rator and denominator of the fraction

f ( b ) - f ( a )
<p(6) —ç(û)

Indeed, in this case we would (after cancelling out b—a) get the 
formula

f ( b ) - f ( a )  f ( Cl)
9 (6 ) — q> (a) 9 ' (c2)

in which a < c 1<b,  a< .c2< b. But since, generally, cl =^c2, the 
resuit obtained obviously does not yet yield the Cauchy theorem.

4.4 THE L1MIT OF A RATIO OF TWO INFINITESIMALS 

^EVALUATING INDETERMINATE FORMS OF THE TYPE

Let the functions f(x) and <p(x), on a certain interval [a, b\, 
satisfy the Cauchy theorem and vanish at the point x = a of this 
interval, f(a) = 0  and <p(a) =  0 .

The ratio r is not defined for x = a, but has a very definite
(p (X)

meaning for values of x ^ a .  Hence, we can raise the question 
of searching for the limit of this ratio as x —>■ a. Evaluating limits 
of this type is usually known as evaluating indeterminate forms
of the type ---.
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138 Ch. 4. Some Theorems on Différentiable Functions

We hâve already encountered such problems, for instance when
sin x

considering the limit lim ------ and when finding dérivatives of
x  -*■ Q x

si n x
elementary functions. Forx =  0, the expression —— is meaningless;

the function =  - is not defined for x =  0 , but we hâve
sin x

seen that the limit of the expression —— as x —*-0 exists and
is equal to unity.

L’Hospital’s Theorem (Rule). Let the functions f (x) and <p(x), 
in [a, b], satisfy the Cauchy theorem and vanish at the point x = a,

fr (x)that is, f (a) — <p (a) =  0 ; then, if the ratio has a limit as
f (x)x —*a, there also exists lim , and

lim
x  -> a

f(x)
9 W

lim
(*)

Proof. On the interval \a, b\ take some point x=£a. Applÿing 
the Cauchy formula we hâve

fix)-f(a) n i )
<PW — <p (a) <p'(s)

where |  lies between a and x. But it is given that / (a) — <p (a) =  0, 
and so

f(x) n i )
9  (X) <p' (I)

If x —► a, then £ —>-a also, since g lies between x and a. And 
if lim =»= A, then lim f-ML exists and is equal to A. Whence

 W (I) 
it is clear that

lim f(x)
« fM

=  lim /'(B
9' (£) '

lim D % =  lim 
.9 (I) * a 9 (*)

and, finally.

lim
x  -+ a

} ( X )  

9 W
lim

x -+  a

r  (x)
9' (*)

Note 1. The theorem holds also for the case where the functions 
f(x) or <p(x) are not defined at,x  =  a, but

lim f  (x) — 0 , lim <p (x) =  0
x  -► a x  -► a

In order to reduce this case to the earlier considered case, we 
redefine the functions f(x) and q>(x) at the point x = a so that
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4.4 Evaluating Indeterminate Forms of the Type — 139

lliey become continuous at the point a. To do this, it is sufficient 
to put

f (a) - litn f (x) =  0 , <p (a) =  *lim q> (jc) =  0
x  -+ a  x  -+ a

f (je)since it is obvious that the limit of the ratio -AA as x —►adoes
?(*)

uot dépend on whether the functions f  (x) and <p(;c) are defined 
al x — a.

Note 2. If f' (a) =  <p' (a) =  0 and the dérivatives f '(x) and <p' (x) 
satisfy the conditions that were imposed by the theorem on the 
tmictions f(x) and q>(jc), then applying the l’Hospital rule to the
ratio L-—  , we arrive at the formula lim - A -, = lim ' A \  , and 

<P (*) W (*)
mi forth.

Note 3. If <p'(a) =  0, but f '(x)^= 0, then the theorem is appli-
cable to the reciprocal ratio which tends to zéro as x—*a.

f  (X)llence, the ratio tends to infinity.

Example 1.

lira sin 5x— lim (sin 5*Y lim 5 cos 5x 5 
*-*•0 3x x -*■ o (3v)' * -*■ o 3 3

Example 2.
1

lim ln 0 + * )  =  Hm _!_+*_
0 X jt -> 0 1

2
1

Example 3.

2x .. e * + e - *  — 2 .. ex —e~x .. ex + e ~ x 2lim-------- :------- =  lim —--=  lim — :------------------=  lim -r -1 = T
a *. o x — sin x x-+o  1 — cos jc x o sinx x-*o  cosjc 1

2

More, we had to apply the l’Hospital rule three times because the ratios of 

t lu* f irs t ,  second and third dérivatives at j c =  0  yield the indeterminate form— .

Note 4. The l’Hospital rule is also applicable if 
lim f(x) = 0  and lim <p(x) =  0

X -+ * >  X  —► 0D

Indeed, putting x =  —, we see that z • 0 as jc -

lim f (-M  =  0 ,
2 -* 0 \ 2 J

oo and therefore
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140 Ch. 4. Some Theorems on Différentiable Functions

Applying the l’Hospital rule to the ratio

lim -£— =  lim«P (*)

=  lim '■ ( 4 )

we find

= lim £-rf\

which is what we wanted to prove. 
Example 4.

* vlim

. k 
sin — 

x

X

lim lim k co s— =  k

4.5 THE LIMIT OF A RATIO OF TWO INFINITELY 
LARGE OUANTITIES

^EVALUATING INDETERMINATE FORMS OF THE TYPE ^

Let us now consider the question of the limit of a ratio of two 
f unctions f  (x) and <p (x) approaching inf inity as x —*- a (or as x —► oo).

Theorem. Let the functions f(x) and (p(jt) be contînuous and 
différentiable for ail x=^a in the neighbourhood of the point a, 
the dérivative qp' (a:) does not vanish; further, let

lim f (x) = oo, lim <p (jc) =  oo 
x  -*■ a x  -+  a

and let there.be a limit

Then there is a limit lim
x  -*■ a

lim
x  -*■ a

f'(x)  

<p' (*)

/(*)
<P(*)

and

A ( )

f(x)
. a <t(x)

lim lim f' ix)
<p' (X) (2)

Proof. In the given neighbourhood of the point a, take two 
points a  and x such that a <  x <  a (or a <  x <  a). By Cauchy’s 
theorem we hâve

f(x) — f ( a)  f'(c)

<p(*)—«P (a) <p'(c) (3)
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1414.5 Evaluât ing Indeterminate Forms of the Type —

where a  <  c <  x. We transform the left side of (3) as follows:

f ( x ) - f ( a )  f ( x)  J W

<PW—<p(a) <p(*) . <p(«)
9(*)

From relations (3) and (4) we hâve
, /(«)

F (c) _ f ( x)  f (X)

<p'(c) q>w . <P(«)
<p(x)

Whence we find
■ <p(«)

f  (■»?) f' (c) «p (*)
<p(*) q>'(c) , f («)

t (x)

From condition (1) it follows that for an arbitrarily small e > 0 , 
a may be chosen so close to a that for ail x = c where a <  c <  a, 
the following inequality will be fulfilled:

or

l.et us further consider the fraction
. <p(«)

<P(*) 
• _  /(«) 

/<*>
Fixing a  so that inequality (6) holds, we allow x to approach a. 

Since f ( x ) — + o o  and q>(x)—>-oo as x —-a, we hâve

lim
x  -* a

, <p («) 
q>

, /(«) 
fW

1

and, consequently, for the earlier chosen e > 0  (for x sufficiently 
dose to a) we will hâve
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142 Ch. 4. Sortie Theorems on Difjerentiable Funciions

or

1 —e <
<p(«)
<p(*)
/(«)
/(*)

< 1  + e (7)

Multiplying together the appropriate terms of inequalities (6) and 
(7), we get

l_5Pjo)

m - « )  ( ' - • )  <  £ $ — f ê -  <  (■4 + e> c + e>
/(*)

or, from (5),

(4 _ e) ( l - e ) < |* g < ( x 4  +  e)(l +  e)

Since e is an arbitrarily small number for x sufficiently close to a, 
it follows from the latter inequalities that

or, by (1),

\i m m = A

lim lim ^ j ~  = A
* - a <P(*) * - a q>w

which complétés the proof.
Note I. If in condition (1) A = oo, that is,

lim ^~rj\ =  oo
x , . 9 W

then (2) holds in this case as well. Indeed, from the preceding 
expression it follows that

i ™ m = °

Then by the theorem iust proved

lim | W =  nm 1 ^  =  0
f (x) r w

whence

lim •£— = oo

Note 2 . The theorem just proved is readily extended to the 
case where x —>• oo. If lim /(x) =  oo, lim <p(x) =  ooand lim

X -*■ CO X  -* CD JC -♦ CO T
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4.5 Evaluating Indeterminate Forms of the Type —oo 143

exists, then

litn ~ |  =  lim (8)

The proof is carried out by the substitution x = — , as was done 
under similar conditions in the case of the indeterminate form 
” (see Sec. 4.4, Note 4).

Example 1.
ex (exY ex

lim — =  lim y —7- =  lim ^ - = 0 0
* -► 00 X x  —y cc \X ) x  -y CD i

Note 3. Once again note that formulas (2) and (8) hold only if 
the limit on the right (finite or infinité) exists. It may happen 
that the limit on the left exists while there is no limit on the 
right. To illustrate, let it be required to find

lim
X -*■ CD

x-J-sin x

Th is limit exists and is equal to 1 . Indeed,

lim
x +  sin x

But the ratio of dérivatives
(jt +  sinx)' 1 +  cosx « .
■ (,'i - ^ 1—  - l + c o s x

ns x —► oo does not approach any limit, it oscillâtes between 0  
nnd 2 .

Example 2.

Example 3.

ax2-\-b .. 2 ax a
lim — lim —  =  —

jt * cx2— d 2ex c

„ tan x cos2 * .. 1 cos2 3* .. 1 2-3 cos 3x sin Sx
lim -— — =  lim ----- —̂ =  lim —-------5— =  lim

tan 3* 3 cos2 x 2 cos x sin x
2 cos2 3x

.. cos 3* .. sin 3x .. 3 sm 3x (— 1) 0 (— 1) (— ) 0
=  lim --------  lim —----- =  lim — :----------------=  3 - -  . — =  3

n cos x „ sin x n sin x (!) ( 1) ( 1)
X —y —  X -y  —  x  ~y ~~r~

2 2 2
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144 Ch. 4. Some Theorems on Différentiable Functions

Example 4.

lim =  lim — =  0 
* -  « e* x _ « e*

Generally, foi any intégral n > 0,

.. xn nxn- x n (n— 1 )... 1
lim — =  lim — —  =  . . .  =  lim —-------r-------=  0

The other indeterminate forms reduce to the foregoing cases. 
These forms may be written symbolically as follows:

(a) O o o , (b) 0°, (c) oo°, (d) l 00, (e) oo —  oo 

They hâve the following meaning.
(a) Let lim / (a:) =  0; lim ç ( a : )  =  o o ;  it is required to find

x  ->■ a x  a

lim [/(x)<p(*)]

that is, the indeterminate form O oo.
If the required expression is rewritten as follows:

or in the form

lim [/ (x) <p (x)] =  lim
x  -+ a x  -* a 1

<p W

lim [/(x)<p(x)] = liin  -2 -j -̂

/<*)

0 oothen as x —>-a we obtain the indeterminate form or —.
U 00

Example 5.
1

lim = -  lim — - 0lim xn \ n x  =  lim — .....  —
x - o  x o j_  x -> o __ n x _+ o n

x n x n + 1

(b) Let
lim f {x) =  0 , lim (p (*) =  0

it is required to find
lim [f(x)]*<*

or, as we say, to evaluate the indeterminate form 0°. 
Putting

y=[f(x)]'*{*>
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4.6 Taylor*s Formula 145

Inke logarithms of both sides of the équation:
lny =  q>(x) [ln f (*)]

As x —>-a we obtain (on the right) the indeterminate form 0 -oo. 
l'inding lim \ny,  it is easy to get lim y. Indeed, by virtue of the

x a je —► a

continuity of the logarithmic function, lim \ n y =\ n  lim y and if
JC -► fl JC —► fl

In lim y —b, it is obvious that lim y = é>. If, in particular, b =  +oo
x -+ a jc ->  a

or —oo, then we will hâve lim */ =  +  <» or 0 , respectively.
Example 6. It is required to find lim xx. Putting y =  xx we flnd ln lim y  =

jc  ->  0
— 11m ln y =  lim ln (jc*) =  lim (x ln x)\

_1_

lim ( x \ n x ) =  lim lim —* — — lim x =  0
jc  -► 0 j c ->  C jc  -► 0 ____jc  —► 0

X x2

(lonsequently, ln lim y =  0, whence lim y — e ° = l ,  or

lim x* — 1
jc ->  0

The technique is similar for finding limits ?n other cases.

4.6 TAYLOR’S FORMULA

Let us assume that the function y = f(x) has ail dérivatives up 
lo the (n + l) th  order, inclusive, in some interval containing the 
point x — a. Let us find a polynomial y = Pn(x) of degree not 
nbove n, the value of which at x = a is equal to the value of the 
function f(x) at this point, and the values of its dérivatives up 
lo the nth order at x = a are equal to the values of the correspond- 
Ing dérivatives of the function f(x) at this point:

Pn (a) =  / (a), P'n (a) =  / ' (a), P"n (a) =  f" (a), . . . .  PT (a) =  /<"> (a) (1)

It is natural to expect that, in a certain sense, such a polynomial 
Is “close” to the function f(x).

Let us look for this polynomial in the form of a polynomial in 
powers of (x—a) with undetermined coefficients:

Pn (*) =  C0 +  Ct (x— a) +  C2 (x—a)2 +  Cs (x — a)3

+ . . . + C tt(x—a)n (21

We define the undetermined coefficients Cx, C2, . . . ,  Cn so that 
conditions (1) are satisfied.

II) 2081
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146 Ch. 4. Some Theorems on Difjerentiable Functions

Let us first find the dérivatives of P„(x):
P'n (x) = Cl +  2 C2 (x—a) +  3Ca (x —a)2 + . . .+nC„ (x—a)"-1 ' 
P"n(x) = 2-lC2 + 3-2C3(x —a )+  . . .  + n  (n — 1) C„ (x—a)n~* >

PP(x) = n ( n - l )  . . .  2 • 1 • C„ J

(3)

Substituting, into the left and right sides of (2) and (3), the 
value of a in place of x and replacing, by (1), Pn(a) by /(a), 
P'n(a) = f ’ (a), etc., we get

f(a) = C0 
/'(a ) =  C1 

f"(à) - - 2 - 1C4 

/ ” (a) —3-2- 1CS

f in) (a) = n(n — 1 ) (/i — 2) . . .  21C„

whence we find

C# =  /(a), C , = r  (a), C2==±r(a) ,

^ 3 =  1-2-3^ ^ n =  T 2  ~ n ^ n1 ,

Substituting into (2) the values of Cx, C2, . . . ,  C„ that hâve been 
founçl, we get the required polynomial:

Pn (x) =  / ( a ) +  —  / ' (a) +  f” (a) +  f "  (a)

+ - - -+ F F 7 7 ;  ^ >(a> (5>

Designate by R„(x) the différence between the values of the given 
function f(x) and the constructed polynomial Pn{x) (Fig. 96):

£«(*) =  / ( * ) —p n(x)
whence

f(x) = Pn (x) + Rn {x)

or, in expanded form,

f  W =  f  (a) +  —  f ’ (a) + — ^  r  (a)

+  ••• +  ̂  r ( a )  + R„(X) (6)
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4.6 Taylor's Formula 147

R„ (x) is called the remainder. For those 
values of x, for which the remainder 
R„(x) is small, the polynomial P„(x) 
yields an approximate représentation of 
t lie function f(x).

Thus, formula (6) enables one to rep-
lace the function y = f{x) by the poly-
nomial y = Pn(x) to an appropriate deg- 
rce of accuracy equal to the value of 
t lie remainder Rn(x).

Our next problem is to evaluate the 
(|uantity Ra(x) for various values of x.

Let us write the remainder in the form

RnOc)
(x—a)n+ l

(* + 1)1 Q(x) (7)

where Q(x) is a certain function to be defined, and accordingly 
rcwrite (6 ):

l(x) = f  (a) + ~  (a) +  f  (a)

+  . . . + ^ / “ W
(x— a)n+1 

(n+D! Q(x) (6')

For fixed x and a, the function Q (x) has a definite value; dénoté 
It by Q.

Let us further examine the auxiliary function of t (t lying between 
<i and x):

/•• ( o = /  (x ) - f  ( t ) - ^ - r  n o  -  • • •
( * - < ) » + *  ^  

( n + l ) l  V

where Q has the value defined by the relation (6 '); here we con- 
sider a and x to be definite numbers.

We find the dérivative F' (/):

/•■' (o=- r (o+r (0 - V  f (o+2- V L f w
 <)+••• +  + r  (o

S*zzîïLfin+»(t) + ln+^ X)Xty,Qn\

or, on cancelling,

F' (0 =  -  — r 2 / (n+1, (0 +  (±= r1 Q (8)

lir
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148 Ch. 4. Some Tkeorems on Différentiable Fùnctionê

Thus, the function F (t) has a dérivative at ail points t lying near 
the point with abscissa a (a ̂  ^  x when a <  x and 
when a >  x).

It will furfher be noted that, on the basis of (6 '),

F(x) = 0, F (a) = 0

Therefore, the Rolle theorem is applicable to the function F (t) 
and, consequently, there exists a value t = £ lying between a and 
x such that F’ (£) =  0 . Whence, on the basis of relation (8), we get

and from this
Q =  Ptt+1)(t)

Substituting this expression into (7), we get
(x— a)"*1

(«4-1)1
+ (g)

This is the so-called Lagrange form of the remainder.
Since £ lies between x and a, it may be represented in the form *

% = a + Q(x—a)

where 0 is a number lying between 0  and 1, that is, 0  <  0 <  1 ; 
then the formula of the remainder takes the form

R* (* ) = > j ),)r / (n+1) [ « + 0  <*-«)]

The formula

1W “  /  (a) +  T T  /' («) +  T 22 /"(«)+■••

+ i £ ^ r ( a ) +  i £ ^ , . . * . . [ a + e ( , - a)] (9)

is called Taylor's formula of the function f(x).
If in the Taylor formula we put a =  0 we will hâve

f ( x ) = n o ) + ^ r  (0 ) + ^ n o ) + . . .

+ Ç f in) ( ° )+ (5 n ir  <̂n+1> (0*) 0°)

where 0 lies between 0 and 1. This spécial case of the Taylor for-
mula is sometimes called Maclaurin's formula.

* See end of Sec. 4.2.
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4.7 Expansion of e*, sin x, cosx in a Taylor sériés 149

4.7 EXPANSION OF THE FUNCTIONS e* ,  sin x ,
AND cosx  IN A TAYLOR SERIES

1. Expansion of the function f ( x )  =  ex . Finding the successive 
dérivatives of f(x),  we hâve

/(*)=«*. / (  0) =  1

/'(* )=«*, / ' ( 0 ) =  1

/<«) (x)=ex, /<"> (0) =  1

Substituting the expressions obtained into formula (10) (Sec. 4.6), 
we get

g* —  i _ l  j L 4 . i l 4 . i l  4 .  xn+1 0 <  0 <  11 +  11 T- 2| -r 31 i-  • • • -l- -t- (n_|_ i)j e . u ^  0 ^  1

If | x | < l ,  then, taking n =  8 , we obtain an estimate of the 
remainder:

Rt < ± 3 <  10-‘

l;or x =  1 we get a formula that permits approximating the number e:

* = 1  +  I + i + ' 5 ï + "  • + ¥

Calculating to the sixth décimal place,* and then rounding to five 
décimais, we hâve

e =  2.71828
3

llere the error does not exceed gj-, or 0 .0 0 0 0 1 . 
Observe that no matter what x is, the remainder

35 n
00

Indeed, since 0 <  1, the quantity «•* for fixed x is bounded (it 
Is less than e* for x >  0 and less than 1 for x <  0).

We shall prove that, no matter what the fixed number x.
xn+l 

<«+1)1
0 as n 00

Indeed,

Ixn+1 I l x x x x x I
( n + l) l  | | l  * 2 * 3  ' *•  « * ^ + ï |

* Otherwise the overall rounding error may considerably exceed Rt  (for 
Instance, for 10 terms, this error can exceed 5-10-*).
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150 Ch. 4. Some Theorems on Différentiable Functions

If x is a fixed number, there will be a positive integer N such 
that

\ x \ < N

I x IWe introduce the notation - ^ -  =  <7; then, noting that 0  <  ? <  1. 
we can write for n = N + l ,  N +  2, N +  3, etc.

JCn + 1 X X X * .  * 1
(«4-1)1 T  ' T ’ • ' n n + 1 |

1 - Il- I X
• 1 -

| JC | | JC
ia  | | 3

| . .  .
N — 1 \ N ’ l n | |  n +  1

x X *A-1 n n - N + 2• - j .  . . N - -1 * H’ H• • *q -

for the reason that
jc

ÂT /v+i l < 9 ’ < q

XA' - 1
But is a constant quantity; that is to say, it is independ-
ent of n, while qn-x+t approaches zéro as n —► 0 0 . And so

Iim
n -> cd

x n+ l

(n+l)l
0 ( )

Consequently, Rn =  also approaches zéro as n approa-
ches infinity.

From the foregoing it follows that for any x (if a sufficient 
number of terms is taken) we can evaluate e* to any degree of 
accuracy.

2. Expansion of the function / ( j r )  =  sinx . We find the succes-
sive dérivatives of f(x) = sinx:

f(x) = s inx  f  (0) =  0

f  (x) =cosx  =  s in^x- fy ^  , f ( 0) =  1

f"(x) = — sinjf =  s in(* +  2 - j ) ,  f ( 0) =  0

F” (*) =  — cosjc =  sin ^  +  . f" '  (0) =  — 1

Fv (x) =sinx: =  sin ^x +  4 , / lv(0) =  0 .

/<">(*) =  sin(x +  n f ) ,  /<»>(0 ) =  s i n n £

/<"+i>(x)=sin(*  +  ( r t + l ) f ) ,  / (n+1)(|) =  sin [ê +  ( « + 1) y ]
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4.7 Expansion of ex, sin x, cos x in a Taylor sériés J 51

Substituting the values obtained into (10), Sec. 4.6, we get 
expansion of the function / (jc) =  sin jc by the Taylor formula:

an

y 3  y 6

s in *  =  * — 3 T +  5 T'
, Xn . Jl+  - 7 Sin n 
1 ni

wi + l
2 ^ ( « + 1)1

sin ( n + l ) - j j

Since sin |^-{- (n+  1) | ^  I, we hâve lim #„(.«) =  0 for ail

values of x.
Let us apply fhe formula in order to approximate sin 20°. Put 

n - 3, thus restricting ourselves to the first two terms of the 
expansion:

sin 20° =  sin — æ — ^  ( ir  )* =  0.342

Let us estimate the error, which is equal to the remainder:

I ■*3 1 =  | (£ )*  ^ sin  (1+ 2n) | <  ( î ) 4-  «  0.00062 <  0.001

llcnce, the error is less than 0.001, and so sin 20° =  0.342 to 
lliree places of décimais.

Fig. 97 shows the graphs of the function /(x) =  sinx and the
jç3

llrst three approximations: S2 (*)= *— ^  , S3 (jt)= jt—
X* X*

31 ‘ 51 *
3. Expansion of the function f ( x )  =  cos x.  Finding the values 

of the successive dérivatives for x = 0 of the function f(x) = cos*
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152 Ch. 4. Some Theorems on Différentiable Functions

and substituting them into the Maclaurin formula, we get the 
expansion

~ « ' - ÿ + ï - - - - + S “ ( * T ) + C T i “ [ » + < » + ' ) T ] .
1 5 1< 1*1

Here again, lim /?„(*) =  0 for ail values of x.

Exercises on Chapter 4

Verify the truth of Rolle’s theorem for the functions: 1. y  =  x2— 3x +  2 on
the interval [1, 2]. 2 . y =  x? +  5x2—6x on the interval [0, 1]. 3. y =  (x— 1) x
X ( jc — 2) (jc— 3) on the interval [1, 3]. 4. y =  sin2* on the interval [0, j i ] .

5. The function f (x) =  4 x ? x 2—4x— 1 has roots I and —I. Find the root
of the dérivative f  (x) mentioned in Rolle’s theorem. __________

0 . Verify that between the roots of the function y =  \ / x 2— 5* +  6 lies the 
root of its dérivative.

7. Verify the truth of Rolle’s theorem for the function y =  cos2* on the

interval | —--p  + ' 4"] •

8 . The function y = l  — x4 becomes zéro at the end points of the inter- 
val [—i, 1], Make it clear that the dérivative of this function does not vanish 
anywhere in the interval (— 1, 1). Explain why Rolle’s theorem is not appli-
cable here.

9 . Form Laçrange’s formula for the function y =  sin *  on the interval 
[xlt x2]. Ans. sin * 2 — sin x1 =  (x2—xl) cos c, xx <  c < *2.

10. Verify the truth of the Lagrange formula for the function y  =  2x—x2 
on the interval [0 , IJ.

11 . At what point is the tangent to the curve y — xn parallel to the chord
from point (0 , 0 ) to Af2 (a, an)? Ans. At the point with abscissa

a
C n -  1 / -  *

V *
12 . At what point is the tangent to the curve y =  \nx  parallel to the chord 

linking the points M i(l, 0 ) and M2 (ef 1)? Ans. At the point with abscissa 
c —e— 1.

Applying the Lagrange theorem, prove the inequalities: 13. ex ^ \ - \ - x .  
14. In (1 + x )  < x (x > 0). 15. bn—an < nbn- 1(b—a) for (b > a). 16. arctan x < x. 
17. Write the Cauchy formula for the functions f(x) =  x2, cp (jc) =  je® on the

interval [l, 2 ] and findc. Ans. c= -g - .

Evatuate the following limits:

18. lim 7  . Ans. — . 19. lim -— —  . Ans. 2. 20. lim ■ a-P . Ans. 2.
x —► 1

2 1 . lim
0

( Ÿ^2 as x

xn— \ 

e*2— 1

sin x

cos x — 1

+o, -  y~2

Ans. — 2 . 22 . lim —
*-*o VT

x +o x sin x 

Ans. There is no limit
-cos x

n\ 00 i* ln s in x  1
-0)- 23-  “ T-

•*-T

as x

s
Прямоугольник

s
Прямоугольник


