Lecture 11

SOME THEOREMS ON DIFFERENTIABLE FUNCTIONS

A THEOREM ON THE ROOTS OF A DERIVATIVE
(ROLLE’S THEOREM)

Rolle’s Theorem. /f a function f(x) is continuouson an interval
[a, b) and is differentiable at all interior points of the interval,
and vanishes [f(a)=7[(b)=0] at the end points x=a and x=0b,
then inside [a, b] there exists at least one point x=c, a<<c<b,
at which the derivative ' (x) vanishes, that is, ' (c)=0.*

Proof. Since the function f(x) is continuous on the interval
[¢, b], it has a maximum M and a minimum m on that interval.

If M=m the function f(x) is constant, which means that for
nll values of x it has a constant value f(x) m. But then at any
point of the interval f'(x)=0, and the theorem is proved.

Suppose M %=m. Then at least one of these numbers is not
¢qual to zero.

For the sake of definiteness, let us assume that M > 0 and that
the function takes on its maximum value at x=c¢, so that
[(c)=M. Let it be noted that, here, ¢ is not equal either to a
or to b, since it is given that f(a) O f(b) =0. Since f(c) is the
maximum value of the function, it follows that f(c+ Ax) —

f(c) <0, both when Ax >0 and when Ax < 0. Whence it fol-
lows that

f(c+AA’2"”°)<0 when Ax > 0 (1)
f(c+i’2—f(c) =0 when Ax<0 (1"

Since it is given in the theorem that the derivative at x=¢
exists, we get, upon passing to the limit as Ax—0,

lim [EX89=10 _#()<0 when Ax>0

Ax >0 Ax
lim L€F20=1O _ 5 (;)>0 when Ar<o0
Ax —» 0

But the relations ' (¢)<<0 and f'(c) =0 are compatible only if
|’ (¢)=0. Consequently, there is a point c¢ inside the interval
|a, ] at which the derivative f’(x) is equal to zero.

®* The number ¢ is called a root of the function @ (x) if @ (c) =0.
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The theorem about the roots of a derivative has a simple geo-
metric interpretation: if a continuous curve, which at each point
has a tangent, intersects the x-axis at points with abscissas a
and b, then on this curve there will be at least one point with
abscissa ¢, a<<c<b, at which the tangent is parallel to the
x-axis.

¥i
y=f(x)
f(a)-
=f(b) |
0l a ¢ c, b 2
Fig. 92 Fig. 93

Note 1. The theorem that has just been proved also holds for
a differentiable function such that does not vanish at the end
points of the interval [a, b], but takes on equal values f(a) = f (b)
(Fig. 92). The proof in this case is exactly the same as before.

Note 2. If the function f(x) is such that the derivative does
not exist at all points within the interval [a, b], the assertion
of the theorem may prove erroneous (in this case there might
not be a point ¢ in the interval [a, b], at which the derivative
f’ (x) vanishes).

For example, the function

y=Ff)=1—x

(Fig. 93) is continuous on the interval [—1, 1] and vanishes at
the end points of the interval, yet the derivative

4 2

within the interval does not vanish. This is because there is a
point x=0 inside the interval at which the derivative does not
exist (hecomes infinite).

The graph shown in Fig. 94 is another
instance of a function whose derivative
does not vanish in the interval [0, 2].

The conditions of the Rolle theorem are
not fulfilled for this function either,
because at the point x=1 the function
Fig. 94 has no derivative.
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THE MEAN-VALUE THEOREM (LAGRANGE’S THEOREM)

Lagrange’s Theorem. If a function [(x) is continuous on the
interval [a, b] and differentiable at all interior points of the inter-
val, there will be, within [a, b], at least one point ¢, a < ¢ <b,

such that
f®)—f(@)=F (c)(b—a) (1)
Proof. Let us denote by Q the number f—ﬂ%#—) that is, set:
b) —

and let us consider the auxiliary function F(x) defined by the
¢quation
Fx)=f(x)—f(a) —(x—a)Q (3)
What is the geometric significance of the function F(x)? First
write the equation of the chord AB (Fig. 95), taking into account
that its slope is N—bgz-i(—LI):Q and Y\
that it passes through the point
(a, f(a)):
y—F(@)=Q(x—a)

whence
y=f(a)+Q(x—a)
But  F(x)=F(0)—[f(@)+Qx—-a)].

Thus, for each value of x, F(x) is

f(b)

cqual to the difference between the > oz e ‘C’—.“; EL I
ordinates of the curve y=f(x) and )
the chord y=f(a)+Q(x—a) for Fig. 95

points with the same abscissa.

It will readily be seen that F(x) is continuous on the interval
|a, b], is differentiable within the interval, and vanishes at the
end points of the interval; in other words, F(a)=0, F(b)=0.
llence, the Rolle theorem is applicable to the function F(x). By
llnis theorem, there exists within the interval a point x=c¢ such
that

F'(¢c)=0
But
F'x)=F"(x)—Q
und so
F)=f()—Q=0
wlience

Q=F(c)


s
Прямоугольник

s
Прямоугольник


Substituting the value of Q in (2), we get

b—a
whence follows formula (1) directly. The theorem is thus proved.
See Fig. 95 for an explanation of the geometric significance of
the Lagrange theorem. From the figure it is immediately clear

that the quantity f—(b%—EfT@- is the tangent of the angle of incli-

nation a of the chord passing through the points A and B with
abscissas a and b.

On the other hand, f'(c) is the tangent of the angle of inclina-
tion of the tangent line to the curve at the point with abscissa c.
Thus, the geometric significance of (1°) or its equivalent (1) consists
in the following: if at all points of the arc AB there is a tangent
line, then there will be, on this arc, a point C between A and B
at which the tangent is parallel to the chord connecting points A
and B.

Now note the following. Since the value of ¢ satisfies the con-
dition a <c < b, it follows that c—a < b—a, or

c—a=0(b—a)
where 0 is a certain number between 0 and 1, that is,
IR R
But then
c=a+0(b—a)
and formula (1) may be written as follows:
f(b)—f(a)=(b—a)f [a+6(b—a)], 0<O] (1)

THE GENERALIZED MEAN-VALUE THEOREM
(CAUCHY’S THEOREM)

Cauchy’s Theorem. If f(x) and @ (x) are two functions continuous
on an interval [a, b] and differentiable within it, and ¢’ (x) does
not vanish anywhere inside the interval, there will be, in [a, b],
a point x=c¢, a<c<b, such that

fo)y—f@ _ ()

P9 @ ¥ ()
Proof. Let us define the number Q by the equation
_f®)—f@)
O=s0—¢@ @)

It will be noted that @ (b)—o (a)#0, since otherwise ¢ (b)) would
be equal to ¢ (a), and then, by the Rolle theorem, the derivative
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¢’ (x) would vanish in the interval; but this contradicts the sta-
tement of the theorem.
Let us construct an auxiliary functiofl

Fx)=f(x)—Ff(a)—Q[p (x) —¢(a)]

It is obvious that F(a)=0 and F (b)=0 (this follows from the
definition of the function F (x) and the definition of the number Q).
Noting that the function F(x) satisfies all the hypotheses of the
Rolle theorem on the interval [a, b], we conclude that there exists
between a and b a value x=c (a<c<b) such that F’ (c)=0.
But F’ (x)=f" (x)—Q@’ (x), hence

F'(c)=F (c)—Q¢ (c)=0
_F©
Q=50
Substituting the value of Q into (2) we get (1).
Note. The Cauchy theorem cannot be proved (as it might appear

at first glance) by applying the Lagrange theorem to the nume-
rator and denominator of the fraction

f (b)—[ (a)
¢ (b)—e¢(a)

whence

Indeed, in this case we would (after cancelling out b—a) get the
formula

FO)—F@ _ F e
Qb)—o@ ¢ (c)

in which a<¢, <b, a<c,<b. But since, generally, ¢, s=c,, the
result obtained obviously does not yet yield the Cauchy theorem.

THE LIMIT OF A RATIO OF TWO INFINITESIMALS
0

(EVALUATING INDETERMINATE FORMS OF THE TYPE F)

Let the functions f(x) and ¢ (x), on a certain interval [a, b],
satisfy the Cauchy theorem and vanish at the point x=a of this
interval, f(a)=0 and ¢ (a)=0.

The ratio CP—((% is not defined for x=a, but has a very definite
meaning for values of x==a. Hence, we can raise the question
of searching for the limit of this ratio as x — a. Evaluating limits
of this type is usually known as evaluating indeterminate forms

of the type %.
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We have already encountered such problems, for instance when
considering the limit lim 32X and when finding derivatives of

x>0

. . sinx . .
elementary functions. For x =0, the expression —— s meaningless;

the function F(x)=5i;x is not defined for x=0, but we have

seen that the limit of the expression %’f as x — 0 exists and

is equal to unity.
L’Hospital’s Theorem (Rule). Let the functions f(x) and ¢ (x),
in [a, b], satisfy the Cauchy theorem and vanish at the point x = a,

that is, f(a)=@ (a)=0; then, if the ratio f(—x) has a limit as

¢'(x)
X — a, there also exists lim f—(ﬁ-, and
x—a® ()
lim HCII = lim aC)

x-+a(P(x) x-»a(P(x)

Proof. On the interval [a, b] take some point xs~a. Applying
the Cauchy formula we have

foo—Ffm _ ' (®
PX)—@ (@) @ (§)

where § lies between a and x. But it is given that f (a)=¢ (a) =
and so

fx) _F @
) @ (B (D
If x—a, then & — a also, since & lies between x and a. And

if lim L (:))zA then lim L (2) exists and is equal to A. Whence
x—»a E—»d

it is clear that
" ()

. [ () f’ F® [’ (x)
o e® My ® w4

and, finally,

fx)

' (x)
li [ _ lim ——
xl—zna (x) Jr!inaqJ (x,

Note 1. The theorem holds also for the case where the functions
[ (x) or @(x) are not defined at,x=a, but

lim f(x)=0, lim ¢(x)=0

X =>4 xX—=>a

In order to reduce this case to the earlier considered case, we
redefine the functions f(x) and ¢(x) at the point x=a so that
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they become continuous at the point a. To do this, it is sufficient
to put

f(@)= lim f(x)=0, @(a)=dim ¢(x)=

since it is obvious that the limit of the ratio f(—xx) as x — a does

not depend on whether the functions f(x) and ¢ (x) are defined
nl x=a.

Note 2. If f' (a)=¢’ (@) =0 and the derivatives ' (x) and ¢’ (x)
wiatisfy the conditions that were imposed by the theorem on the
functions f(x) and ¢ (x), then applying the I'Hospital rule to the

ratio r (x), we arrive at the formula lim [ ) = lim e , and
¢’ (x) x0a® ) soa¥ (@
so forth.

Note 3. If ¢’ (a)=0, but f" (x)40, then the theorem is appli-
cable to the reciprocal ratio q}—((y)), which tends to zero as x— a.
lience, the ratio ) tends to infinity.

P (x)
Example 1.
lim Sin8x__ jjym (sin 5x)’ lim 9cos5x__ i
x>0 3x x-0 3v)’ x—>0 3 -3
Example 2.
1
im nd4+x_ o 1+x 1,
x—=>0 X x—>0 1 1

Example 3.

i =62 gy e T =2 et g gtet 2,
s 0 X—sinx e T T—cosx Lo Tsinx 4 cosx T

Here, we had to apply the I'Hospital rule three times because the ratios of

the first, second and third derivatives at x=0 yield the indeterminate form%.

Note 4. The I'Hospital rule is also applicable if
lim f(x)=0 and lim ¢(x)=0

X —> o X—>m®

Indeed, putting x= i , we see that z— 0 as x — oo and therefore

llmf( ) , llm(p( ) =0

z—>0 A z2->0


s
Прямоугольник


which is what we wanted to prove.

Example 4.
R - k 1
sin < k cos-; — 5 b
lim = lim = lim kcos—==~
P ] L X > ® ___L X > ® X
X x2

THE LIMIT OF A RATIO OF TWO INFINITELY
LARGE QUANTITIES

(EVALUATING INDETERMINATE FORMS OF THE TYPE %)

Let us now consider the question of the limit of a ratio of two
functions f (x) and ¢ (x) approaching infinity as x — a (or as x — o).
Theorem. Let the functions f(x) and ¢ (x) be continuous and
differentiable for all x=~a in the neighbourhood of the point a,
the derivative @’ (x) does not vanish,; further, let
lim f (x) =00, lime(x)=o00
X

~»a X—>a

and let there.be a limit

. fx)
Im L4 L
Then there is a limit lim JAC) and
X —->a q)(X)
lim L&) _ jim L0 _ 4 2)

x0a ®X) L a0 (¥)

Proof. In the given neighbourhood of the point a, take two
points a and x such that a <x<a (or a< x <a). By Cauchy’s
theorem we have

[(x)—F(a) _ f'(c)
O (X)—g (@) @ () (3)
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where a < ¢ < x. We transform the left side of (3) as follows:

A C))
fr—f@ _fx —— Px )
PH)—¢@) @  _ @)
P (%)
IFrom relations (3) and (4) we have
f (@)

') _ fx "T®
o) 9w _ 9@

@ (%)
Whence we find
|_2(@)
fx)_F© P (x) (5)
o) ') |_[(2)
f(x)

From condition (1) it follows that for an arbitrarily small e >0,
a may be chosen so close to a that for all x=c where a < ¢ < a,
the following inequality will be fulfilled:

@
Iw'(c) A I <e
or
' (c)
A—e< 77 < A+e (6)
l.et us further consider the fraction
2@
P (x)
)
[ (x)

Fixing a so that inequality (6) holds, we allow x to approach a.
Since f(x)— oo and ¢ (x) — oo as x—a, we have

nnd, consequently, for the earlier chosen € >0 (for x sufficiently
close to a) we will have

2@

Px)
| /() li<e

— s

[ (x)
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or
9 ()
oM
l—e <K ___f—(_a__)— <l +4e (7
f (x)

Multiplying together the appropriate terms of inequalities (6) and
(7), we get

_ 9 (a)
(C) @ (x)

(A—e) (1—e) <7y — @ < (A+e)(1+e)
T

or, from (5),

(A—¢g) (1—e) < é‘(’;)) < (A+e)(1+¢)

Since e is an arbitrarily small number for x sufficiently close to q,
it follows from the latter inequalities that

f (x)
Jim C=4
or, by (1),
lim 1) _ lim f'(x)—A

x—»a(P(x) x—»a‘p’(x)_
which completes the proof.
Note 1. If in condition (1) A =00, that is,
[’ (x)

.\!l—tnaq) (%) =

then (2) holds in this case as well. Indeed, from the preceding
expression it follows that

@' (%)
Jlim =y =0

Then by the theorem just proved

Q(x) Q' (x)
lim = lim 2oy =0

whence
lim T _

xa®®)
Note 2. The theorem just proved is readily extended to the

case where x — oo, If lim f(x) =00, lim ¢ (x)=o00 and lim f(("))
X+ ® X > ® X+ ®
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exists, then

lim

X = ®

f (x) [’ (x)
@x) xhln@ ¢’ (¥) ®)

The proof is carried out by the substitution x=%, as was done
under similar conditions in the case of the indeterminate form

8- (see Sec. 4.4, Note 4).
Example 1.

X
lim &£ = lim (") lim &= w

Note 3. Once again note that formulas (2) and (8) hold only if
the limit on the right (finite or infinite) exists. It may happen
that the limit on the left exists while there is no limit on the
right. To illustrate, let it be required to find

. X4 sin
lim +sin x

X > @
This limit exists and is equal to 1. Indeed,
lim ZEIE_ i (14305) =

X > ® X =+ ®

But the ratio of derivatives

(x+sinx)’ 14-cosx
(x") _ 1

=]-4cosx

ns x— oo does not approach any limit, it oscillates between 0
and 2.

Example 2.
lim % ax+b_ lim 2ax =2
x> @ CX cxt—d - ® 2x ¢
Example 3.
1
tan x cos? x . 1 cos23x . I 2.3 cos 3xsin 3x
— i 3 — — T —_—
umﬂ tan 3x l mﬂ 3 hmn 3 cos?x hmn 3 2cosxsinx
>3 **%3 costdax *T 7 7y
- i cos 3x im sm3x= 5 3sin3x (—l) 3(—l) (—1) _3

mﬂ cos x a Sinx m,, sin x (1) (1) (1)
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Example 4.

x> o€ X+ o €%
Generally, for any integral n > 0,
ooxr L ooaxn-lt . n(n—I)...1
xlimw ?—xlimm pranba KRR _xl-’mw —ex——__o

The other indeterminate forms reduce to the foregoing cases.
These forms may be written symbolically as follows:

(a) 0-00, (b) 0°, (c) 00 (d) 1®, (e) co—oo

They have the following meaning.
(a) Let lim f(x)=0; lim @ (x) =o00; it is required to find

X —+a X —+a

lim [f (x) @ (x)]

X—>a

that is, the indeterminate form 0-oo.
If the required expression is rewritten as follows:
lim [f (x) @ (1)) = lim L&
X —+a X—-a ____

P (x)

or in the form
lim [f(x)¢p(x)] =lim ‘Lf'—tl
X -4

X —=a
f (x)
then as x—a we obtain the indeterminate form FO or % .
Example 5.
1
lim x7In x= lim ln_x:: lim ud =— lim i\:’i::o
x>0 x-0 1 x50 __ _n x>0 N
xn xn+1l

(b) Let

lim f(x)=0, lime¢ (x)=0

X—-a

it is required to find

lim [f (]

X ->a

or, as we say, to evaluate the indeterminate form 0°.

Putting
y=[f(x))»
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tnke logarithms of both sides of the equation:
lny=g () [Inf ()]

As x —a we obtain (on the right) the indeterminate form 0-oo.
I'inding lim Iny, it is easy to get lim y. Indeed, by virtue of the

mntinuit;»o? the logarithmic funct?o_ﬁ? lim Iny=1In lim y and if

—+a x—+a
In lim y =0, it is obvious that lim y=e"f[f, in particular, b= +o0
X —+a X -—>a
or —oo, then we will have limy =+ oo or 0, respectively.

Example 6. It is required to find lim x*. Putting y=x* we find Inlimy =
x—>0
= lim In y=1im In (x¥) =lim (x In x);

lim (xInx)= lim lI2: lim
x—0 x—+C _l x>0 1 x—+0
x x?

Consequently, Inlim y =0, whence limy=e%=1, or

lim x*=1
x—>0

The technique is similar for finding limits in other cases.

TAYLOR’S FORMULA

Let us assume that the function y=f(x) has all derivatives up
to the (n+ 1)th order, inclusive, in some interval containing the
point x=a. Let us find a polynomial y=P,(x) of degree not
anhove n, the value of which at x=a is equal to the value of the
function f(x) at this point, and the values of its derivatives up
lo the nth order at x =a are equal to the values of the correspond-
ing derivatives of the function f(x) at this point:

P,(a)=f(a), Py(a)=F"(a), Pr(@=Ff"(a), ..., PP (a)=["(a) (1)

It is natural to expect that, in a certain sense, such a polynomial
Is “close” to the function f(x).

Let us look for this polynomial in the form of a polynomial in
powers of (x—a) with undetermined coefficients:

Pn (x) = CO_I—CI (x——a)—{—Cz (x_a)2+C3 (x_a)a
+...4+C,(x—a)" A

We define the undetermined coefficients C,, C,, ..., C, so that
conditions (1) are satisfied,
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Let us first find the derivatives of P, (x):
P,(x)=C,+2C,(x—a)+3C;(x—a)*+ ... +nC,(x—a)"*~
P,(x)=2-1C,+3-2C,(x—a)+ ... +n(n—1)C,(x—a)"~*

(3)
P;,"’(x)= nn—1)...2.1.C,

Substituting, into the left and right sides of (2) and (3), the
value of a in place of x and replacing, by (1), P,(a) by f(a),
P,(a) = (a), etc., we get

f(a)=C,

f’ (a)zcl
['(a)==2-1C,
[ (@)=3-2-1C,

----------

fo (@) =n(n—1)(n—2) ... 2-1C,
whence we find
C=f@. C=l@ C=p3l@, |

. 1 (4)
C =_f (a), ’ Cn=1,2 ’

S () |

Substituting into (2) the values of C,, C,, ..., C, that have been
found, we get the required polynomlal

P.(0)=f@+ T2 @+ 5L @+ 4521 (a)
+oo e [ @) (5)

Designate by R, (x) the difference between the values of the given
function f(x) and the constructed polynomial P,(x) (Fig. 96):

Rp(x)=f (x)— P, (x)
whence

f(X)=P,(x)+ R, (x)
or, in expanded form,
Fx) = 221 @)

+...+‘i;—,‘”—f‘"’<a)+R,,(x> (6)

ll
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R, (x) is called the remainder. For those ¢ 4
vialues of x, for which the remainder
R, (x) is small, the polynomial P, (x) Rp ()
yiclds an approximate representation of °
the function f(x).

Thus, formula (6) enables one to rep-
lace the function y=/f(x) by the poly-

nomial y= P, (x) to an appropriate deg-
ree of accuracy equal to the value of ™
the remainder R, (x).

Our next problem is to evaluate the e
quantity R, (x) for various values of x. 0 a z T

Let us write the remainder in the form Fig. 96

—q)n+1
R, (1) =52 Q (4) (7)

(DI

where Q(x) is a certain function to be defined, and accordingly
rewrite (6):

[(x)=f(a) +

X—a

f@+252 )
o T e ()  E2ITE Q) (6)

IFor fixed x and a, the function Q(x) has a definite value; denote

it by Q.

Let us further examine the auxiliary function of # (¢ lying between
a and x):

Fity=fw—ft) =2 =2 oy — ..

(x—28)" cn (x—t)n+1
— = F O =g @

where Q has the value defined by the relation (6"); here we con-

sider @ and x to be definite numbers.
We find the derivative F’ (t)'

L+ 250 p ()

-—&%ﬁﬁwn+~~+%E%rwwﬂ+ﬂﬁiL—wwn

—) ., (n+1) (x—1¢
_x — )" fo+n (f) n (n)-i(—xl)l )? Q

or, on cancelling,

Fr ()= =8 jonen gy L E= (8)
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Thus, the function F (f) has a derivative at all points ¢ lying near
the point with abscissa a(@<<{{<Cx when a<x and a>t>x
when a > x).

It will further be noted that, on the basis of (6'),

F(x)=0, F(a)=

Therefore, the Rolle theorem is applicable to the function F (%)
and, consequently, there exists a value {=E lying between a and
x such that F’(§)=0. Whence, on the basis of relation (8), we get

. (x:IE)" f(n+1) (E,) + %Q =0

and from this

Q = f&+1 (§)

Substituting this expression into (7), we get

R, (x) = (’;n—-:)l)l fint D) ()

This is the so-called Lagrange form of the remainder.
Since § lies between x and a, it may be represented in the form

E=a40(x—a)

wliere 8 is a number lying between 0 and 1, that is, 0 <0 < I;
then the formula of the remainder takes the form

Ry (x) = = [0 [a 40 (x—a)]

The formula
F=f@+52F (@ + &
+(_x:nlaif(n) (@) +%);TH fr+0 [a 40 (x—a)] 9)

is called Taylor’s formula of the function f(x).
If in the Taylor formula we put a=0 we will have

FO=FO)+EF O+2F 0 +..
+ = f(n) (0) + (:_';;l f+0(8x) (10)

where 0 lies between 0 and 1. This special case of the Taylor for-
mula is sometimes called Maclaurin’s formula.
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EXPANSION OF THE FUNCTIONS ¢*, sinx,
AND cos x IN A TAYLOR SERIES

1. Expansion of the function f(x)==e¢*. Finding the successive
derivatives of f(x), we have

fy=e*, [(0)=1
Fy=e, [ O)=1

Substituting the expressions obtained into formula (10) (Sec. 4.6),
we get

] xa n n+1
=145 T+ 5 T+ .+"m+——(:++l)! & 0<o< 1

If |x|<<1, then, taking n=8, we obtain an estimate of the
remainder:

Ry < 53 < 10-*
FFor x =1 we get a formula that permits approximating the number e;
1 1 1

Calculating to the sixth decimal place,* and then rounding to five
decimals, we have
e=2.71828

llere the error does not exceed %, or 0.00001.

Observe that no matter what x is, the remainder
xn+l
Rn=(n+—me°”—>0 as n— oo
Indeed, since 6 < 1, the quantity e* for fixed x is bounded (it
is less than ¢* for x >0 and less than 1 for x < 0).
We shall prove that, no matter what the fixed number x,

xll-l-l 0
—_— as n— oo
D
Indeed,
Al R 2 A S .
mFDI | [T 273 "7 'nfl

* Otherwise the overall rounding error may considerably exceed R, (for
Instance, for 10 terms, this error can exceed 5-10-8).


s
Прямоугольник

s
Прямоугольник


If x is a fixed number, there will be a positive integer N such

that
[x| <N

| x|

We introduce the notation =4 then, noting that 0 < g < 1,
we can write for n=N+41, N4+2, N3, etc.

xn+1

(n+1)!
x || x
7|

X X X X

x L,
1 2 3""'n n+41

x
I'n

=1
X x X X xN qn—N+a

<T' 23 ~N=179 9=@w=m

for the reason that

ud
N

w1| <

=g, INL_H|<q, e

But (%N_——ll)! is a constant quantity; that is to say, it is independ-

ent of n, while ¢g"-¥*? approaches zero as n—oo0. And so
xnt+1

now@HDI T (1.)

Consequently, R, (x) = (nxrll)l also approaches zero as n approa-

ches infinity.

From the foregoing it follows that for any x (if a sufficient
number of terms is taken) we can evaluate ¢* to any degree of
accuracy.

2. Expansion of the function f(x)=sinx. We find the succes-
sive derivatives of f(x)=sinx:

f(x) =sinx f(0)=0

[ (x) =cosx=sir1(x—|—%), f"0)=1

f* (x) =—sinx=sin(x+2%>, f"(0)=0
f’'' (x) = —cosx=sin (x—I—Bg-) , [ (0)=—1
v (x) =sinx=sin(x+4-’2‘-), fIv (0) = 0.
f™ (x) = sin (x—i—n%) , f (0) =sin n—;‘-

fotD () = sin(x—i—(n—i— 1)12‘-) , f+D (B) =sin [§+(n—|— 1) %]
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Substituting the values obtained into (10), Sec. 4.6, we get an
expansion of the function f(x)=sinx by the Taylor formula:

b n n+1 .
sinx=x—§+§!-—- .+2—!sinn%+(n—’5£msm[g+(n+l)%]
Since ,sin [§+(n+l)i2‘-] ,<1, we have lim R, (x)=0 for all

values of x.

Let us apply the formula in order to approximate sin20°. Put
n -3, thus restricting ourselves to the first two terms of the
¢xpansion:

sin 20° = sin % z%—gll— (%)3=0.342

Let us estimate the error, which is equal to the remainder:
4 j . 4]
|Rel=|(5)" 4ysin &+ 20) | < (5 )" 3~ 0.00062 < 0.001

llence, the error is less than 0.001, and so sin 20°=0.342 to
three places of decimals.

| [/} \ |
l .
i J/ !
1 J/ !
\ y=z s S
P gl po, 1 o5
\‘ // / y=I T +120.r
\\ J/ /
\ / -\\\\-\. //
\ >
A AN 1 SN\ _
-~ \\\ 0 ’ : \\3\/ :
7 N ~ \
N v \ :
/ \ y=sinzx
/ y=r-—’z"\
/ \
7 \
!
Fig. 97

Fig. 97 shows the graphs of the function f(x)=sinx and the
first three approximations: S, (x)=x, S, (x)=x—§x!3, S, (x) =x—
x i
"yt
3. Expansion of the function f(x)=cosx. Finding the values
of the successive derivatives for x=0 of the function f(x)=cosx
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and substituting them into the Maclaurin formula, we get the
expansion

2 xt n n+1
cosx=1 —;.‘_!'_l'ﬁ_" . +’;‘1—lcos (n%)—l-(:fT’Ll)lcos [§+(n+l)-’2—‘-] ,
|81 <]

Here again, lim R, (x)=0 for all values of x.

n—» o
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