Lecture 10

DERIVATIVES OF DIFFERENT ORDERS

Let a function y= f(x) be differentiable on some interval [a, b].
Generally speaking, the values of the derivative f’' (x) depend on x,
which is to say that the derivative f’(x) is also a function of x.
Differentiating this function, we obtain the so-called second deri-
vative of the function f(x).

The derivative of a first derivative is called a derivative of the
second order or the second derivative of the original function and
is denoted by the symbol y” or f*(x):

y'=) =)
For example, if y= x5, then
y ' =5bx, y' = (bx*) =20x°

The derivative of the second derivative is called a derivative
of the third order or the third derivative and is denoted by y'” or
f’ll(x).

Generally, a derivative of the nth order of a function [(x) is
called the derivative (first-order) of the derivative of the (n—1)th
order and is denoted by the symbol y* or [ (x):

y(n) — (y(n—l))' p— f(") (x)
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(The order of the derivative is taken in parentheses so as to avoid
confusion with the exponent of a power.)

Derivatives of the fourth, fifth, and higher orders are also de-
noted by Roman numerals: gV, y¥, yVl,.... . Here, the order of
the derivative may be written without brackets. For instance, if
y=xb then y' =>5x* y" =20x3, y'"=60x2 yV=y*=120x, y¥ =
=: y(5)= 120, y(e)zy(”: c e =0. -

Example 1. Given a function y=ek* (k=const). Find the expression of
its derivative of anz order n.

Solution. y’ = kek*, y” =Fk2ek*, . ., y'® =knekx

Example 2. y=sinx. Find y{n.

Solution.

‘=cos x=sin (x—i—’—;-)

y"=—sin x =sin <x+212t-)

y'"=— cos x=sin x+3%)
. / )
v = = sin =
Y sin x = sin \x+4 5 )

Y™ =sin (x+n%)

In similar fashion we can also derive the formulas for the de-
rivatives of any order of certain other elementary functions. The
rcader himself can find the formulas for derivatives of the nth
order of the functions y=x*, y=cosx, y=Inux.

The rules given in theorems 2 and 3, Sec. 3.7, are readily gene-
ralized to the case of derivatives of any order.

In this case we have obvious formulas:

(u + v)(”) — u(”) _I__ v(”)’ (Cu)(") + Cu(”)

Let us derive a formula (called the Leibniz rule, or Leibniz for-
mula) that will enable us to calculate the nth derivative of the
product of two functions u(x) v(x). To obtain this formula, let
us first find several derivatives and then establish the general rule
for finding the derivative of any order:

Y=uv
Yy =uv+uw'
y" — u/lv+ urvf + ulvl + uvn — u”(’+2u'v’ +uU”
Yy '=u""v — "’ = 2u"t" + 2u'v" + u'v" + wv'”
=u""v4 3u"v" +3u'v" + uw"
YV =uVo+4u""v' 4 6u"v" 4 4u'v" 4 uplVv
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The rule for forming derivatives holds for the derivative of any
order and obviously consists in the following.

The expression (u-v)” is expanded by the binomial theorem,
and in the expansion obtained the exponents of the powers of u
and v are replaced by indices that are the orders of the deriva-
tives, and the zero powers (u°=1v°=1) in the end terms of the
expansion are replaced by the functions themselves (that is, “de-
rivatives of zero order”):

n(n

—T3— .;1) =y L+ wo™

y(") — (uv)(") — u(n)v _+_ nu("—l)v' +
This is the Leibniz rule.

A rigorous proof of this formula may be carried out by the
method of complete mathematical induction (in other words, to
prove that if this formula holds for the nth order it will hold
for the order n41).

Example 3. y=e%*x2. Find the derivative y»,

Solution.
u=—gea*, v=x2
u' =aed*, v =2x
u"=aqa%%%, V=2
u(n),:aneax, V' =plV=.,..=0

nn—1)

n—=2,ax.
5 an—2gax.9

Y® =anedxx? | nan—1¢6%.2x |

or
y'm =eax [anx? 4 2nan—1x-+n (n—1)a"—2?)

3.23 DIFFERENTIALS OF DIFFERENT ORDERS

Suppose we have a function y= f(x), where x is the independent
variable. The differential of this function

dy = f' (x)dx

is some function of x, but only the first factor, f’(x), can depend
on x; the second factor, dx, is an increment of the independent
variable x and is independent of the value of this variable. Since
dy is a function of x we have the right to speak of the differen-
tial of this function.

The differential of the differential of a function is called the
second differential or the second-order differential of the function
and is denoted by d%y:

d (dy) =d*y
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Let us find the expression for the second differential. By virtue
of the general definition of a differential we have

d?y = [’ (x)dx])’ d«
Since dx is independent of x, dx is taken outside the sign of the
derivative upon differentiation, and we get
dry = [" (x) (dx)*

When writing the degree of a differential it is common to drop
the brackets; in place of (dx)? we write dx? to mean the square
of the expression dx; in place of (dx)® we write dx?, etc.

The third differential or the third-order differential of a function
is the differential of its second differential:

d’y =d (d*y) = [[" (x) d¥*]" dx =" (x) dx®
Generally, the nth differential is the first differential of a diffe-
rential of the (n—1)th order:
d"y =d(d*~'y) = [["~" (x) dx"~"]"dx
d*y = [ (x) dx" (1)
Using differentials of different orders, we can represent the deri-
vative of any order as a ratio of differentials of the appropriate

orders:

Fo=2, rm=54 ..., [ ©=02 2)

Note. Equations (1) and (2) are true (for n > 1) solely in the
case where x is an independent variable. Indeed, suppose we have
the composite function

y=F@u), u=9¢( 3)

We have seen that the first-order differential preserves its form
irrespective of whether u is an independent variable or a function
of x:

dy = F, (u)du (4)

The second and higher differentials do not have that property.
Indeed, by (3) and (4), we get

d*y =d (F, (u)du)
But here du=¢’ (x)dx is dependent on x and so we get
d*y =d (Fy, (u)) du—+ F; (u)d (du)

or
d*y = Fuu (u) (du)* + F, (u) d*u, where d*u=q"(x)(dx)*  (5)

In similar fashion, we find g%y and so on.
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Example 1. Find dy and d?y of the composite function

y=sinu, u=Vx
Solution.

l
dy = cos u. = dx=cosu du
2Vx
Furthermore, by formula (5), we obtain

d?y = — sin u (du)?+ cos u d*u = — sin u (du)? - cos u-u” (dx)
. 1 2 1
ox — SIN U(2V.}_> (Jx)2+ COSU(—W> (dX)’

DERIVATIVES (OF VARIOUS ORDERS)
OF IMPLICIT FUNCTIONS
AND OF FUNCTIGNS REPRESENTED PARAMETRICALLY

1. An example will illustrate the finding of derivatives of diffe-
rent orders of implicit functions.

L.et an implicit function y of x be defined by the equation

FHE—1=0 M

Differentiate all terms of the equation, with respect to x, and
remember that y is a function of x:

2y dy

2x
Tt g =0
From this we get
dy b
= "2y (2)

Again differentiate with respect to x (having in view that y is a
function of x):

dy
dly AT
WS T E T
Substituting, in place of the derivative ix, its expression from (2),
we get
b x
&y g Yt¥ray
T I AT R
or, after simplifying.
&y b (a®4-b%7)

dd a‘y? ’
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I'rom equation (1) it follows that
a2y2 + b2x2 — a2b.2
Therefore the second derivative may be represented as

dzy___ bt
2 s

Differentiating the latter equation with respect to x, we find % , etc.

2. Let us now consider the problem of finding the derivatives of

higher orders of a function represented parametrically.

Let the function y of x be represented by parametric equations:
x=9(f)
y=v()

The function x=¢(f) has an inverse function {=®(x) on the
interval [¢,, T].
In Sec 3.18 it was proved that in this case the derivative 4 is

}to<t<r (3)

dx
defined by the equation
dy
dy dt
= & (4)
dt
To find the second derivative, %, differentiate (4) with respect

to x, bearing in mind that ¢ is a function of x:

dy dy
dy d| df \ _d| df \dt
ari{m>—m<a>a ()
dt dt

but
dy dxd(dy\ dyd(dx dx d*y dy d*x
ddz_m7ﬁ%mazﬁ_mw—am
3?(2’)?)_ dx \2 - Fdx \2
it & (%)
dt 1
dx = dx
dt

&y __ dtd?  didi®
dx? ux 3
(@
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This formula may be written in more compact form as follows:
dy o ()Y (6)—¥ (1) " (¢)

de® [¢" ()P

3 4
In similar fashion we can find the derivatives Z—xf,, Z—x-y‘ and so forth.
Example. A function y of x is represented parametrically:

x=acost, y=bsin{

. . dy d%
Find the derivatives ' a3
Solution.
dx . d2x
d—t= —asint, w:—a cost
dy dy .
—a-t—b cos ¢, T —bsint
d—y= bCO.St =—£—C0tt
dx —asint a
d_"’y__(—a sin {) (—bsin{)—(bcos?)(—acos t) _i |
dx? (—asin ¢)3 T a? sin3¢

THE MECHANICAL MEANING OF THE SECOND DERIVATIVE

Let s be the path covered by a body in translation as a function
of the time; it is expressed as

s=f() (1)

As we already know (see Sec. 3.1.), the velocity v of a body at
any time is equal to the first derivative of the path with respect
to time: J

S

At some time ¢, let the velocity of the body be v. If the motion
is not uniform, then during an interval of time Af that has elapsed
since ¢ the velocity will change by the increment Av.

The average acceleration during time Af¢ is the ratio of the
increment in velocity Av to the increment in time:

Av

=3¢

Acceleration at a given instant is the limit of the ratio of the
increment in velocity to the increment in time as the latter

approaches zero:

) Av
a=1im A
At =0
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In other words, acceleration (at a given instant) is equal to the
derivative of the velocity with respect to time:

e
T dt
. ds
but since v="15> consequently,
a_g ds\ d%
T dt\dt)  di®

or the acceleration of linear motion is equal to the second derivative
nf the path covered with respect to time. Reverting to equation (1),

we get
a=["(¢)

Example. Find the velocity v and the acceleration a of a freely falling body,
if the dependence of distance s upon time ¢ is given by the formula

1
S='2—gt2+vot+50 3

where g=9.8 m/sec? is the acceleration of gravity and syo=s;-, is the value
of s at t=0.
Solution. Differentiating, we find

ds
v=-d—t=gt+vo 4)

from this formula it follows that v,= (v);=.
Differentiating again, we find

l.et it be noted that, conversely, if the acceleration of some motion is constant
and equal to g, the velocity will be expressed by equation (4), and the distance
by equation (3) provided that (v);=g=1v, and (s)t=9=5,.

THE EQUATIONS OF A TANGENT AND OF A NORMAL.
THE LENGTHS OF A SUBTANGENT AND A SUBNORMAL

Let us consider a curve whose equation is
y=F(x)

On this curve take a point M (x,, y,) (Fig. 88) and write the
cquation of the tangent line to the given curve at the point M,
assuming that this tangent is not parallel to the axis of ordinates.

The equation of a straight line with slope & passing through
the point M is of the form

Yy—Yy=k(x—x,)
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For the tangent line
k=Ff"(x,)
and so the equation of the tangent is of the form
y—y=[ (%) (x—x,)

In addition to the tangent to a curve at a given point, one often
has to consider the normal.

Definition. The normal to a curve at a given point is a straight
line passing through the given point perpendicular to the tangent
y at that point.

f From the definition of a normal
it follows that its slope %, is con-
nected with the slope %, of the
tangent by the equation

by =—

ky

1
kn - —f,g(xl)

\ S|

Fig. 88

Hence, the equation of a nor-
mal to a curve y=f(x) at a point M(x, y,) is of the form

1
y—%=—7¢5u—mo

Example 1. Write the equations of the tangent and the normal to the curve
y=x3 at the point. M (I, I).

Solution. Since y’=3x2, the slope of the tangent is (y')y_,=3.

Therefore, the equation of the tangent is

y—1=3(x—1) or y=3x—2
The equation of the normal is
y—1=—g (x—1)
or
y--—;-x+%
(see Fig. 89).

The length T of the segment QM (Fig. 88) of the tangent bet-
ween the point of tangency and the x-axis is called the length of
the tangent. The projection of this segment on the x-axis, that is,
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QP, is called the subtangent; the
length of the subtangent is deno-
ted by S;. The length N of the
segment MR is called the length
of the normal, while the projec-
tion RP of the segment RM on
the x-axis is called the subnor-
mal; the length of the subnor-
mal is denoted by Sy.

Let us find the quantities T,
S, N, Sy for the curve y=f(x)
and the point M (x,, y,).

From Fig. 88 it will be seen

that
i
Y

ST::
n

- 3 —_—

T=]/y%+ =4 Vy;2+ll

h Y1 :
It is further clear from this same figure that
PR =y, tana|=|y,y;|

Fig. 89

Y
tana

QP =|y, cota|=

therefore
Y

and so
. ) SN——“lyly;I
N=Vyg+wsn)>r=yVT+y?|

These formulas are derived on the assumption that y, >0, y; > 0.
llowever, they hold in the general case as well.

Example 2. Find the equations of the tangent and normal, the lengths of
the tangent and the subtangent, the lengths of the normal and subnormal for

Y|
— M
K- !

4-4- o= T
u_y 3

Fig. 90

the ellipse
x=acost, y=>bsint (1)

at the point M (x;, y;) for which t=% (Fig. 90).
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Solution. From equations (1) we find

dx \ dy dy b dy b
d—t--—asmt, -a-?_bcost, It——zcott, (E t=1— 2
4
We find the coordinates of the point of tangency M:
b
n=w ==, =) ==
i:T 2 {= T 2

The equation of the tangent is

or _
bx+ay—ab YV 2=0

The equation of the normal is

or
(ax—by) V2—a2+462=0
The lengths of the subtangent and subnormal are
b
V2 a
ST= = —
b v
| a
b b b2
Sy= = ——=)|= —
N . 2( a) aV 2
The lengths of the tangent and the normal are
b
Ve V/(=ET Ry
T= —l (—-E-> —l—] =W Va +b
a
b b \2 b
N= —_— ]/ —_—— = —_— '/'02 b2
VQ 1+( a ) a 2 T

THE GEOMETRIC MEANING OF THE DERIVATIVE
OF THE RADIUS VECTOR WITH RESPECT TO THE POLAR ANGLE

We have the following equation of a curve in polar coordinates:
p=/(6) (h
Let us write the formulas for changing from polar coordinates

to rectangular Cartesian coordinates:
x=pcosO, y=psinb
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Substituting, in place of p, its expression in terms of 6 from
¢quation (1), we get

x=[(0)cosO, y=f (e)osin 0 (2)

l’quations (2) are parametric equations of the given curve, the
parameter being the polar angle 0 (Fig. 91).

If we denote by ¢ the angle formed )
by the tangent to the curve at some point
M (p, 8) with the positive x-axis, we will
have LM
dy P
dy do
tanp=—="=—
d d [ 4
5 D 7 "z
or Fig. 91
dp
Tl sin 8+ p cos 0
tangp = B o - (3)
70 €8 p sin

Denote by p the angle between the direction of the radius vector
and the tangent. It is obvious that p=¢ —8,

tan p—tan 0
I|-tangtan@

Substituting, in place of tang, its expression (3) and makmg
the necessary changes, we get

(o’ sin 8+ p cos B) cos 0 —(p' cos 6 — p sin 0) sin 6 p
(p' cos 0—p sin ) cos B4 (p' sin OFpcosO)sin®

tanp =

tanp =

or
pe=pcotp (4)
Thus, the derivative of the radius vector with respect to the
wolar angle is equal to the length of the radius vector multiplied

)y the cotangent of the angle between the radius vector and the
tangent to the curve at the given point.

Example. Show that the tarigent to the logarithmic spiral
p=e®

Intersects the radius vector at a constant angle.
Solution. From the equation of the spiral we get

' = ged
From formula (4) we have

’

cotp=‘—;=a, that is, p =arccot a = const
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