
RATIVES OF DIFFERENT ORDERS

Let a function y = f(x) be différentiable on some interval [a, b]. 
Generally speaking, the values of the dérivative / ' (x) dépend on x, 
which is to say that the dérivative / '  (x) is also a function of x .  
Differentiating this function, we obtain the so-called second déri-
vative of the function /(x).

The dérivative of a first dérivative is called a dérivative of the 
second order or the second dérivative of the original function and 
is denoted by the symbol y" or /"(x):

y"=(y ')' =  /"(x)

For example, if t/ =  x5, then

y '^bx* , y” =  (5x4)' =  20x3

The dérivative of the second dérivative is called a dérivative 
of the third order or the third dérivative and is denoted by y'" or
r ( x ) .

Generally, a dérivative of the nth order of a function /(x) is 
called the dérivative (first-order) of the dérivative of the (n— l)th 
order and is denoted by the symbol yin) or /<n)(x):

ÿW> =  (j« - 7  =  /W (x)

s
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3.22 Dérivatives of Different Orders

(The order of the dérivâtive is taken in parenthèses so as to avoid 
confusion with the exponent of a power.)

Dérivatives of the fourth, fifth, and higher orders are also de- 
noted by Roman mimerais: yw, yv, yV1,» . ..  . Here, the ordei of 
the dérivative may be written without brackets. For instance, if 
y = xl, then y '=  5xl, y" — 20x3, y'" = 60xt, ylv = yi*)— l20x, yv = 
«= y w - 120, y<*> =  i/<7) =  . . .  =  0.

Example 1. Given a function y  =  ekx (k =  const). Find the expression of 
lis dérivative of any order n.

Solution. y' — kexx, y" =  k2ekx, . . . .  y{n) =  knekx.
Example 2 . (/ =  sin je. Find y(n).
Solution.

In similar fashion we can also dérivé the formulas for the dé-
rivatives of any order of certain other elementary functions. The 
reader himself can find the formulas for dérivatives of the nth 
order of the functions y = xk, y — cosx, y = \n x .

The rules given in theorems 2 and 3, Sec. 3.7, are readily gene- 
ralized to the case of dérivatives of any order.

In this case we hâve obvious formulas:

Let us dérivé a formula (called the Leibniz rule, or Leibniz for-
mula) that will enable us to calculate the nth dérivative of the 
product of two functions u(x) v{x). To obtain this formula, let 
us first find several dérivatives and then establish the general rule 
for finding the dérivative of any order:

y = uv
y' = u'v +  uv’
y" — u'v -f u'v' +  u'v' +  uv” — u"v -f 2 u'v' +  uv" 

y ‘" =  u'"v _  „"v' -  2uV  +  2u'v" +  u'v" -f uv'"
= u"v +  3 u"v' -f 3 u'v" +  uv"' 

yW - uivv +  4u 'V  -f- -(- 4u'v'" -f uv,v

(u + =  «(n) +  u(n>, (Cu)<"> +  Cu{tt)

H 2081

s
Прямоугольник

s
Прямоугольник



114 Ch. 3. Dérivative and Differential

The rule for forming dérivatives holds for the dérivative of any 
order and obviously consists in the following.

The expression (u +  v)n is expanded by the binomial theorem, 
and in the expansion obtained the exponents of the powers of u 
and v are replaced by indices that are the orders of the dériva-
tives, and the zéro powers («° =  o#= l )  in the end terms of the 
expansion are replaced by the functions themselves (that is, “dé-
rivatives of zéro order”):

yw  =  («p)(n) =  uSn)v +  nu{n~1)u' -f -{-... +  uuw

This is the Leibniz rule.
A rigorous proof of this formula may be carried out by the 

method of complété mathematical induction (in other words, to 
prove that if this formula holds for the nth order it will hold 
for the order n + 1 ).

Example 3. y =  eaxx2. Find the dérivative y{n).
Solution.

u =  eax, v =  x2
u' =  aeaxy v '= 2 x
u” =  a2eax, v” =  2

y( n)  ^  aneax v”’ = v 'V = , . = 0

yin) =  aiteoxx i  _|_ „an -1  ea x . 2X - f  ^  a" -  2eax ■ 2

or
yin) — eax [anx*-\-2nan~1x-{-n (n— 1) a"-2 ]

3.23 DIFFERENTIALS OF DIFFERENT ORDERS

Suppose we hâve a function y = f(x), where x is the independent 
variable. The differential of this function

dy =  / ' (x) dx

is some function of x, but only the first factor, (x), can dépend 
on x; the second factor, dx, is an incrément of the independent 
variable x and is independent of the value of this variable. Since 
dy is a function of x we hâve the right to speak of the difïeren- 
tial of this function.

The differential of the differential of a function is called the 
second differential or the second-order differential of the function 
and is denoted by d?y:

d (dy) = d'ly
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3.23 Differentials of Different Orders 115

Let us find the expression for the second differential. By virtue 
of the general définition of a differential we hâve

d2y = [/' (x) dx] ' dx

Since dx is independent of x, dx is taken outside the sign of the 
dérivative upon différentiation, and we get

d2y =  f" (x) (dx)2

When writing the degree of a differential it is common to drop 
the brackets; in place of (dx)2 we write dx2 to mean the square 
of the expression dx; in place of (dx)3 we write dx3’, etc.

The third differential or the third-order differential of a function 
is the differential of its second differential:

d3y = d (d*y) =  [/" (x) d*2] ’ dx =  /'" (x) dx3

Generally, the nth differential is the first differential of a diffe-
rential of the (n— l)th order:

dny = d (dn~1y) = [/<n“1) (x) dxn~1] ' dx
dny = /<n) (x) dx" (1)

Using differentials of different orders, we can represent the déri-
vative of any order as a ratio of differentials of the appropriate 
orders:

rw = |.  r w - g ..... r w = g  (2)
Note. Equations (1) and (2) are true (for n >  1) solely in the 

case where x is an independent variable. Indeed, suppose we hâve 
the composite function

y = F(u), M =  (p(x) (3)

We hâve seen that the first-order differential préserves its form 
irrespective of whether u is an independent variable or a function 
of x:

dy =  F’u (u) du (4)

The second and higher differentials do not hâve that property. 
Indeed, b y (3) and (4), we get

dffy = d (F'a (u) du)

But here du =  q/ (x) dx is dépendent on x and so we get 

d2y =  d (F'u (u)) du +  F’„ (u) d (du)
or

d2y = F”uu(u)(du)2 + F'u(u)d2u, where d2u =  <p" (x) (dx)2 (5)

In similar fashion, we find d3y and so on.
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116 Ch. 3. Dérivative and Differentiat

Example 1. Find dy and <Py of the composite function

y  =  sin ut u — V x
Solution.

dy C03 U " — — ■ dx =  cos u du 
2ŸX

Furthermore, by formula (5), we obtain

<Py =  — sin u (du)2 +  cos u (Pu =  — sin u (du)2 -f- cos u • u" (dx)2

— sin B( 2 7 7  )* cos “ ( — & 7 r ) {dx)t

3.24 DERIVATIVES (OF VARIOUS ORDERS)
OF IMPLICIT FUNCTIONS 

AND OF FUNCTIONS REPRESENTED PARAMETRICALLY

1. An example will illustrate the finding of dérivatives of diffe-
rent orders of implicit functions.

Let an implicit function y of x be defined by the équation
y2 |<2

V H » - - 1 - 0  0 )

Differentiate ail terms of the équation, with respect to x, and 
remember that y is a function of x :

2x 2y dy _  » 
n * ^  b* d x ~

From this we get
dy_= _ P x  
dx a2y (2)

Again differentiate with respect to x (having in view that y is a 
function of x):

dy
d'y V  y ~ X dX
dx2 a* ' y2

Substituting, in place of the d érivative^ , its expression from (2), 

we get
, b* x

d*y é* y + X  a* y
dx' ~  a»' y*

or, after simplifying.
d*y __ b' (a*y*+b*x*) 
dx* a* y*
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3.24 Dérivatives of Implicit Functions 117

l-'rom équation (1) it follows that
a2y2 +  b2x2 =  a2b2 

Therefore the second dérivative may be represented as
<T-y  ___b*_
dx2 a2y3 '

DifTerentiating the latter équation with respect to x, we find ^ , etc.
2. Let us now consider the problem of finding the dérivatives of 

higher orders of a function represented parametrically.
Let the function y of x be represented by parametric équations:

*=<P(<) \  
y = W )  \

<  T (3)

The function x =  <p(/) has an inverse function * =  <D(;t) on the 
interval [/„, T].

In Sec 3.18 it was proved that in this case the dérivative % is 
defined by the équation

dy
d y_ dt
dx dx 

dt

(4)

To find the second dérivative, differentiate (4) with respect 
to x, bearing in mind that t is a function of x:

but

/  dJL
* y  =  d l  dt_ 
dx2 dx\ dx

V 57

f - \d_ dt_ \dt_ 
dt ^  dx J  dx

f  d y \  dx d_ f d y \ _ d y  d_ (  dx \  dx &y___dy d2x
d I dt \ _  dt dt \d t  J dt dt { dt J _  dt dt* dt dt*

n i r  m  ' "
dt _  1 
dx dx 

dt

(5)

Substituting the latter expressions into (5), we get
dx d2y dy d?x
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118 Ch. S. Dérivative and Differential

This formula may be written in more compact form as follows:
d2y =  y' (t) Y  ( 0 — ^  ( 0  «p* (t) 
dx2 [cp' (Z )]3

dPtj d̂  i/In similar fashion we can find the dérivatives ^ , —  and. so forth.

Example. A function y  of x is represented parametrically:

x =  a cos /, y =  6 sin /

dv d2#
Find the dérivatives -7-  , j j  .

dx dx2

Solution.

dx
d/

=  — a sin /
d̂ x
d/ 2

— û cos /

% = b c ° s t ,  g = _ & s i n <

dy_ 6 cos t
dx~~ —a sin /

— cot / 
a

d2y (—a sin /) ( — 6 sin /) — (b cos t ) ( —a cos /) 
dx2~  (—a s in / ) 3

b 1

a2 sin3/

3.25 THE MECHANICAL MEANING OF THE SECOND DERIVATIVE

Let s be the path covered by a body in translation as a function 
of the time; it is expressed as

s = f(t) (1)
As we already know (see Sec. 3.1.), the velocity v of a body at 
any time is equal to the first dérivative of the path with respect 
to time:

At some thne t, let the velocity of the body be v. If the motion 
is not uniform, then during an interval of time A/ that has elapsed 
since t the velocity will change by the incrément Au.

The average accélération during time At is the ratio of the 
incrément in velocity Au to the incrément in time:

_ Au
0aV~ ~ Â t

Accélération at a given instant is the limit of the ratio of the 
incrément in velocity to the incrément in time as the latter 
approaches zéro:
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3.26 The Equations of a Tangent and of a Normal 119

In other words, accélération (at a given instant) is equal to the 
dérivative of the velocity with respect to time:

but since i> =  ̂ ,  consequently,

— — ( ̂ s\ _<**s
° ~ 7 t \d t )  dï*

or the accélération of linear motion is equal to the second dérivative 
nf the path covered with respect to time. Reverting to équation (1), 
we get

a = f" (t)

Example. Find the velocity v and the accélération a of a freely falling body, 
If t lie dependence of distance s upon time t is given by the formula

s = Ÿ g'2~l"tV f - s# (3)

wlicre g =  9.8 m/sec2 is the accélération of gravity and s0 =  s* - 0 is the value 
nf s at t =  0 .

Solution. Differentiating, we find

f  =  § = ^ + » 0  (4)

from this formula it follows that v{) =  (v)t=0.
Differentiating again, we find

dv d2s
a~li~d7i~ e

Lot it be noted that, conversely, if the accélération of some motion is constant 
«nd equal to g, the velocity will be expressed by équation (4), and the distance 
by équation (3) provided that (i>)f=0 =  u0 and (s)t=o =  So-

3.26 THE EQUATIONS OF A TANGENT AND OF A NORMAL.
THE LENGTHS OF A SUBTANGENT AND A SUBNORMAL

Let us consider a curve whose équation is

*/=/(*)

On this curve take a point M (x,, t/?) (Fig. 88) and Write the 
équation of the tangent line to the given curve at the point M, 
assuming that this tangent is not parallel to the axis of ordinates.

The équation of a straight line with slope k passing through 
the point M is of the form

y —yi = k (x — x1)
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120 Ch. 3. Dérivative and Differential

For the tangent line (see Sec. 3.3)

k = f '( x  ù

and so the équation of the tangent is of the form

y — Vx = f' (*i) (x —xi)

In addition to the tangent to a curve at a given point, one often 
has to consider the normal.

Définition. The normal to a curve at a given point is a straight 
line passing through the given point perpendicular to the tangent

at that point.
From the définition of a normal 

it follows that its slope k„ is con- 
nected with the slope kt of the 
tangent by the équation

or

n ”  /',<*.)

Hence, the équation of a nor-
mal to a curve y =  /(x) at a point M (xlt yf) is of the form

Example 1. Write the équations of the tangent and the normal to the curve 
y =  x3 at the point. M( l ,  1).

Solution. Since y ' = Sx2, the slope of the tangent is (y')x=i = 3.
Therefore, the équation of the tangent is

y — l = 3 ( x — I) or y =  3x—2

The équation of the normal is

y - l = - ± ( x -  1)

or

1 . 4 
' 3 * + 3

(see Fig. 89).

The length T of the segment QM (Fig. 88) of the tangent bet- 
ween the point of tangency and the x-axis is called the length of 
ihe tangent. The projection of this segment on the x-axis, that is,
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3.26 The Equations of a Tangent and of a Normal 121

QP, is called the subtangent’, the 
length of the subtangent is deno- 
ted by S T. The length N of the 
segment MR is called the length 
of the normal, while the projec-
tion RP of the segment RM  on 
the x-axis is called the subnor- 
mal\ the length of the subnor-
mal is denoted by SN.

Let us find the quantities T, 
S r, N, SN for the curve y = f(x) 
and the point M (xv yt).

From Fig. 88 it will be seen 
that

QP~=\y1 c o ta | 

therefore

y i y i
tan a yl

S T —

T = y\
y?

Mi.
y'i

- A - V ÿ ? T ï
yi

It is further clear from this same figure that

und so
PR = \!/i tan a | =  | y,y[

Sn =\ j/.j/î I _____
N =  V y \+ ( y ^Y  =  \ y i V \ + y ? \

These formulas are derived on the assumption that yl >  0, y[ >  0. 
Mowever, they hold in the general case as well.

Example 2 . Find the équations of the tangent and normal, the lengths of 
the tangent and the subtangent, the lengths of the normal and subnormal for

the ellipse
x =  a cos /, y — b sin t

at the point M (xl$ y x) for which t = -2- (Fig. 90).

( )
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122 Ch. 3. Dérivative and Differential

Solution. From équations (1) we find

d x  . . d u  . d u  b . . ( d y \
-t t = — asm  t ,  -— =  b c os t ,  ---------------- cot t, —d t  d t  d x  a  \ d x J t £ . J .L

We find the coordinates of the point of tangency M:

The équation of the tangent is

b
y - -

or
Ÿ  2 V j/"

foc+ay— ab Ÿ" 2 =  0 

The équation of the normal is

b a (  a \

y —

(ax— by) Y  2—a2 +  b2 =  0 

The lengths of the subtangent and subnormal are

%)

or

S t  =
V  2

_ _ b _

a

a
T T

»^2 (  « )
6*

a V  2

The lengths of the tangent and the normal are 

b

T =

N=

f i =  —!=- KV +  6»
V 2

y i V *+( — a y  2

a

3.27 THE GEOMETRIC MEANING OF THE DERIVATIVE 
OF THE RADIUS VECTOR WITH RESPECT TO THE POLAR ANGLE

We hâve the following équation of a curve in polar coordinates:

P =  /(9) (1)
Let us write the formulas for changing from polar coordinates 

to rectangular Cartesian coordinates:
x =  pcos0, # =  psin0
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3.27 Dérivative of Radius Vector with Respect to Polar Angle 123

Substituting, in place of p, its expression in terms of 0 from 
équation (1), we get

x =  /  (0) cos 0 , y = f  (0) sin 0 (2 )

liquations (2) are parametric équations of the given curve, the 
piirameter being the polar angle 0 (Fig. 91).

If we dénoté by q> the angle formed 
liy the tangent to the curve at some point 
Al (p, 0) with the positive x-axis, we will 
linve

dy
, dy dQ
ian(?=Tx = -dx 

dQ

or
dp ._L_ cir

tan<p:
dp rns A — n sin A

(3)

Dénoté by p the angle between the direction of the radius vector 
tmd the tangent. It is obvious that p =  (p —0 ,

, tan© — tan 0
an P — | _|_tan (p tan 0

Substituting, in place of tancp, its expression (3) and making 
the necessary changes, we get

+ _  (p' sin 0 +  p cos 0) cos 0 — (p' cos 0 — p sin 0) sin 0 p
an p cqs q — p sjn 0  ̂cos sin 0 - f  p cos 0) sin 0 p'

or
P e  =  P  c o t  p, ( 4 )

Thus, the dérivative of the radius vector with respect to the 
polar angle is equal to the length of the radius vector multiplied 
l>y the cotangent of the angle between the radius vector and the 
tangent to the curve at the given point.

Example. Show that the tangent to the logarithmic spiral

p =  ead

Intersects the radius vector at a constant angle.
Solution. From the équation of the spiral we get

p ' =  ofrt

From formula (4) we hâve

cot p = — = a ,  that is, p =  arccot a =  const
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