
C H A P T E R  1

NUMBER. VARIABLE. FUNCTION

1.1 REAL NUMBERS. REAL NUMBERS AS POINTS 
ON A NUMBER SCALE

Number is one o! the basic concepts of mathematics. It originated 
in ancient times and has undergone expansion and generalization 
over the centuries.

Whole numbers and fractions, both positive and négative, together 
vvith the number zéro are called rational numbers. Every rational
number may be represented in the form of a ratio, -£■, of two

integers p and q\ for example,

In particular, the integer p may be regarded as a ratio of two 
integers y  ; for example,

Rational numbers may be represented in the form of periodic 
terminating or nonterminating fractions. Nurpbers represented by 
nonterminating, but nonperiodic, décimal fractions are called 
irrational numbers; such are the numbers Y  2, Y  3, 5—Y  2, etc.

The collection of ail rational and irrational numbers makes up 
the set of real numbers. The real numbers are ordered in magnitude; 
that is to say, for each pair of real numbers x and y there is one, 
and only one, of the following relations:

x <  y, x =  y, x >  y

Real numbers may be depicted as points on a number scale. 
A number scale is an infinité straight line on which are chosen:
(1) a certain point 0 called the origin, (2) a positive direction 
indicated by an arrow, and (3) a suitable unit of length. We shall 
usually make the number scale horizontal and take the positive 
direction to be from left to right.

If the number xt is positive, it is depicted as a point at 
a distance OM1 = x1 to the right of the origin 0; if the number x%
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12 Ch. 1. Number. Variable. Function

is négative, it is represented by a point AL to the left of 0 at a 
distance OAL,■-=—x., (Fig. 1). The point 0 represents the number 
zéro. It is obvious that every real number is represented by a 
defmite point on the number scale. Two different real numbers are 
represented by different points on the number scale.

The folloxving assertion is also true: each point on the number 
scale represents only one real number (rational or irrational).

To summarize, ail real numbers and ail points on the number 
scale are in one-to-one correspondence: to each number there cor-

responds only one point, and conver-
sa , ,  ̂ x x sely, to each point there corresponds

-2-/ 12 3 only one number. This frequentlv
enables us to regard "the number x” 

F,k;- 1 and "the point a " as, in a certain sen-
se, équivalent expressions. We shall 

make wide use of this circumstance in our course.
We state without proof the following important property of the 

set of real numbers: both rational and irrational numbers may be 
found between any two arbitrary real numbers. In geometrical terms, 
this proposition reads thus: both rational and irrational points may 
be found between any two arbitrary points on the number scale.

In conclusion we give the following theorem, which, in a certain 
sense, represents a bridge between theory and practice.

Theorem. Every irrational number a may be expressed, to any 
degree of accuracy, with the aid of rational numbers.

Indeed, let the irrational number a >  0 and let it be required
1 / I l

to evaluate a with an accuracy of — ^for example, fQ» jôô» and 

so forth^.
No matter what a is, it lies between two intégral numbers N 

and jV+1. We divide the interval between N and .V r  1 into n 
parts; then a will lie somewhere between the rational numbers
N-\~ — and N A-n-lJr 1. Since their différence is equal to — ,each 

1 n 1 n M n
of them expresses a to the given degree of accuracy, the former
being too small and the latter, too large.

Example. The irrational number Ÿ~ 2 is expressed by the rational numbers:
1.4 and 1.5 to one décimal place,
1.41 and 1.42 to two décimal places,
1.414 and 1.415 to three décimal places, etc.

1.2 THE ABSOLUTE VALUE OF A REAL NUMBER

Let us introduce a concept which we shall need later on: the 
absolute value of a real number.

podkl
Прямоугольник

podkl
Прямоугольник



1.2 The Absolute Value of a Real Number 13

Définition. The absolute value (or modulus), of a real number x 
(written |*|) is a nonnegative real number that satisfies the con-
ditions

| * | =  * if x ^  Cf 
| jc j =  — * if * <  0

Examples. |2 |  =  2, | —5 | =  5, |0 |  =  0.

From the définition it follows that the relationship x ^ |x (  holds 
for any x.

Let us examine some of the properties of absolute values.
1. The absolute value of an algebraic sum of several real number s 

is no greater than the sum of the absolute values of the ternis

Proof. Let x + y ^ 0, then

[* +  0l =  * +  ÿ < M  +  |0 | (since and * /< |f/|)

Let x -f y <  0, then

\ x + y \  = — ( * + y) = (— x) +  (— y) < M  +  I y\
This complétés the proof.
The foregoing proof is readily extended to any number of terms. 
Examples.

| —2 +  3 | < |—2 | +  |3 |  =  2 +  3 =  5 or 1 < 5,
| - 3 — 5|  =  | —3 | + 1 —5 | =  3 +  5 =  8 or 8 =  8.

2. The absolute value of a différence is no less than the différence 
of the absolute values of the minuend and subtrahend:

\ x—y \ > \ x \  — \y\, | * | > | 0 |

Proof. Let x —y = z, then x = y-{-z and from what has been 
proved

M = i#+2K M  + |z| = l*/l + l*—y\
whence

M — y\
thus completing the proof.

3. The absolute value of a product is equal to the product of the 
absolute values of the factors:

\xyz\ = \x\ \y\ \z\
4. The absolute value of a quotient is equal to the quotient of the 

absolute values of the dividend and the divisor:
x_ 1*1

y \ y \

The latter two properties follow directly from the définition of 
absolute value.
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14 Ch. 1. Nutnber. Variable. Function

1.3 VARIABLES AND CONSTANTS

The numerical values of such physical quantities as time, length, 
area, volume, mass, velocity, pressure, température, etc. are deter- 
mined by measurement. Mathematics deals with quantities divested 
of any spécifie content. From now on, when speaking of quantities, 
we shall hâve in view their numerical values. In various phenomena, 
the numerical values of certain quantities vary, while the numerical 
values of others remain fixed. For instance, in the uniform motion 
of a point, time and distance change, while the velocity remains 
constant.

A variable is a quantity that takes on various numerical values. 
A constant is a quantity whose numerical values remain fixed. We 
shall use the letters x, y, z, u, . . . ,  etc. to designate variables, 
and the letters a, b, c, . . . ,  etc. to designate constants.

Note. In mathematics, a constant is frequently regarded as a 
spécial case of variable whose numerical values are the same.

It should be noted that when considering spécifie physical pheno-
mena it may happen that one and the same quantity in one pheno- 
menon is a constant while in another it is a variable. For example, 
the velocity of uniform motion is a constant, while the velocity of 
uniformly accelerated motion is a variable. Quantities that hâve 
the same value under ail circumstances are called absolute constants. 
For example, the ratio of the circumference of a circle to its dia- 
meter is an absolute constant: n =  3.14159....

As we shall see throughout this course, the concept of a variable 
quantity is the basic concept of differential and intégral calculus. 
In “Dialectics of Nature”, Friedrich Engels wrote: “The turning 
point in mathematics was Descartes’ variable magnitude. With 
that came motion and hence dialectics in mathematics, and at once, 
too, of necessity the differential and intégral calculus.”

1.4 THE RANGE OF A VARIABLE

A variable takes on a sériés of numerical values. The collection 
of these values may differ dépend ing on the character of the prob- 
lem. For example, the température of water heated under ordinary 
conditions will vary from room température (15-18°C) to the boiling 
point, 100°C. The variable quantity x =  cosa can take on ail 
values from —1 to +1 .

The values of a variable are geometrically depicted as points on 
a number scale. For instance, the values of the variable x = cos a 
for ail possible values of a are depicted as the set of points of the 
interval from —1 to 1, including the points —1 and 1 (Fig. 2).

Définition. The set of ail numerical values of a variable quantity 
is called the range of the variable.
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1.4 The Range of a Variable 15

We shall now define the following ranges of a variable that will 
be frequently used later on.

An interval is the set of ail numbers x# lying between the given 
points a and b (the end points) and is called closed or open accor- 
dingly as it does or does not include 
its end points.

An open interval is the collection of 
ail numbers x lying between and excluding 
the given numbers a and b (a <  b)\ it 
is denoted (a, b) or by means of the 
inequalities a < x  < b.

A closed interval is the set of ail num-
bers x lying between and including the 
two given numbers a and b\ it is 
denoted [a, b] or, by means of inequali-
ties,

If one of the numbers a or b (say, a) belongs to the interval, 
while the other does not, we hâve a partly closed (half-closed) 
interval, which may be given by the inequalities a ^ .x  <  b and is 
denoted [a, b). If the number b belongs to the set and a does not, 
we hâve the half-closed interval (a, b], which may be given by 
the inequalities a < x ^ . b .

If the variable x assumes ail possible values greater than a, such 
an interval is denoted (a, +oo) and is represented by the conditio- 
nal inequalities a <  x <  +  oo. In the same way we regard the infinité 
intervals and half-closed infinité intervals represented by the con- 
ditional inequalities

a ^ x  <  -f- oo, — oo <  x <  c, — oo <  — oo <  x <  +  00

Example. The range of the variable x = c o s a  for ail possible values of a  
is the interval [—1, IJ and is defined by the inequalities —l < x < l .

Fig. 2

The foregoing définitions may be formulated for a “point” in place 
of a “number”.

The neighbourhood of a given point x0 is an arbitrary interval 
(a b) containing this point within it; that is, the interval (a, b)

whose end points satisfy the con- 
•0 x0-t dition a <  x0 <  b. One often con-

------- 1--------— -'------------- *“x siders the neighbourhood (a, b)
£ E of the point x0 for which x0 is the

Fig. 3 midpoint. Then x0 is called the
centre of the neighbourhood and the ̂_ q

quantity —g—, the radius of the neighbourhood. Fig. 3 shows the 
neighbourhood (xQ—e, x0-f-e) of the point x0 with radius e.
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IG Ch. 1. Number. Variable. Function

1.5 ORDERED VARIABLES.
INCREASING AND DECREASING VARIABLES. BOUNDED VARIABLES

We shall say that the variable a  is an ordered variable quantity 
if its range is known and if about each of any two of its values 
it may be said which value is the preceding one and which is the 
following one. Here, the notions “preceding” and “following” are 
not connected with time but serve as a way to “order” the values 
of the variable, i. e., to establish the order of the respective values 
of the variable.

A particular case of an ordered variable is a variable whose
values form a nutnbcr sequencc a , ,  a 2, a *, . . ., a w...........Here, for
k' <  £, the value xk> is the preceding value, and the value xk is 
the following value, irrespective of which one is the greater.

Définition 1. A variable is called increasing if each subséquent 
value of it is greater than the preceding value. A variable is called 
decreasing if each subséquent value is less than the preceding value.

Increasing variable quantities and decreasing variable quantities 
are called monolonically varying variables or simply monotonie 
quantities.

Example. When the number of sides of a regulnr polygon inscribed in a eircle is 
doubled, the area s oî the polygon is an increasing variable. The area of a regular 
polygon circumscribed about a circle, when the number of sides is doubled, is 
a decreasing variable. It may be noted that not every variable quantity is 
necessarily increasing or decreasing. Thus, if a  is an increasing variable over 
the interval [0, 2j i ], the variable x--=sina is not a monotonie quantity. It first 
increases from 0 to 1, then decreases from 1 to — 1, and then increases from 
— 1 to 0.

Définition 2. The variable a  is called bounded if there exists a 
constant AI >  0 such that ail subséquent values of the variable, 
after a certain one, satisfy the condition

—A f ^ x ^ A f  or | a | ^  Af

In other words, a variable is called bounded if it is possible to 
indicate an interval [—Af, AI] such that ail subséquent values of 
the variable, after a certain one, will belong to this interval. 
However, one should not think that the variable will necessarily 
assume ail values on the interval [—Al, Af], For example, the 
variable that assumes ail possible rational values on the interval 
[—2, 2] is bounded, and nevertheless it does not assume ail values 
on [—2, 2], namely, it does not take on the irrational values.

1.6 FUNCTION

In the study of natural phenomena and the solution of technical 
and mathematical problems, one finds it necessary to consider the 
variation of one quantity as dépendent on the variation of another.
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1.6 Function 17

For instance, in studies of motion, the path traversed is regarded 
as a variable which varies with time. Here, the path traversed is 
a function of the time. .

Let us consider another example. We know that the area of a 
circle, in terms of the radius, is Q = nR*. If the radius R takes 
on a variety of numerical values, the area Q will also assume 
various numerical values. Thus, the variation of one variable brings 
about a variation in the other. Here, the area of a circle Q is a 
function of the radius R. Let us formulate a définition of the con-
cept “function”.

Définition 1. If to each value of a variable x (within a certain 
range) there corresponds one definite value of another variable y, 
then y isa function of x or, in functional notation, y = f(x), y — q>(x), 
and so forth.

The variable x is called the independent variable or argument. 
The relation between the variables x and y is called a functional 
relation. The letter f in the functional notation y = f(x) indicates 
that some kind of operations must be performed on the value of 
x in order to obtain the value of y. In place of the notation 
y = f(x), u = <f(x), etc. one occasionally finds y — y{x), u = u(x), 
etc. the letters y , u designating both the dépendent variable and 
the symbol of the operations to be performed on x.

The notation y = C, where C is a constant, dénotés a function 
whose value for any value of x is the same and is equal to C.

Définition 2. The set of values of x for which the values of the 
function y are determined by the rule f(x) is called the domain 
of définition of the function.

Example 1. The function y — sin * is defined for ail values of x. Therefore, 
its domain of définition is the infinité interval — oo < X < + 0 0 .

Note 1. If we hâve a function relation of two variable quan-
tifies x and y = f(x) and it x and y — f(x) are regarded as ordered 
variables, then of the two values of the function y* = f(x*) and 
y** = f(x**) corresponding to two values of the argument x* and 
jc**, the subséquent value of the function will be that one which 
corresponds to the subséquent value of the argument. The following 
définition is therefore natural.

Définition 3. If the function y = f(.v) is such that to a greater 
value of the argument x there corresponds a greater value of the 
function, then the function y = f(x) is called increasing. A decreas- 
ing function is similarly defined.

Exemple 2. The function Q = n R 2 for 0 < R <  oo is an increasing function 
because to a greater value of R there corresponds a greater value of Q.

Note 2. The définition of a function is sometimes broadened so 
that to each value of jc, within a certain range, there corresponds
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18 Ch 1. Numher. Variable. Function

not one but several values of y or even an infinitude of values 
of y. In this case we hâve a multiplezvalued function in contrast 
to the one defined above, which is called a single-valued function. 
Henceforward, when speaking of a function, we shall hâve in view 
only single-valued functions. If it becomes necessary to deal with 
multiple-valued functions we shall specify this fact.

1.7 WAYS OF REPRESENTING FUNCTIONS

I. Tabular représentation of a function

Here, the values of the argument xlt xt, . . . ,  xn and the cor- 
responding values of the function ylt y%, . . . ,«/„ are written out 
in a definite order.

X h * 2 $ * n

y yi y 2 y n

Examples are tables of trigonométrie functions, tables of 
logarithms, and so on.

An experimental study of phenomena can resuit in tables that 
express a functional relation between the measured quantities. For 
example, température measurements of the air at a meteorological 
station on a definite day yield a table like the following.

The température T (in degrees) is dépendent on the time t 
(in hours).

t 1 2 3 4 5 6 7 8 9

T 0 —i —2 —2 - 0 .5 1 3 3.5 4

This table defines T as a function of t.

II. Graphical représentation of a function

If in a rectangular coordinate System on a plane we hâve a set 
of points M{x, y) and no two points lie on a straight line parallel 
to the «/-axis, this set of points defines a certain single-valued 
function y = î(x)\ the abscissas of the points are the values of
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1.7 Ways of Representing Functions 19

the argument, the correspond ing or dînâ-
tes are the values of the function(Fig. 4).

The collection of points in the xy- • 
plane whose abscissas are the values of 
the independent variable and whose 
ordinates are the corresponding values 
of the function is called a graph of the 
given function.

III. Analytical représentation of a function

Let us first explain what “analytical expression” means. By ana-
lytical expression we will understand a sériés of symbols denoting 
certain mathematical operations that are performed in a definite 
sequence on numbers and letters which designate constant or 
variable quantities.

By totality of known mathematical operations we mean not only 
the mathematical operations familiar from the course of secondary 
school (addition, subtraction, extraction of roots, etc.) but also 
those which will be defined as we proceed in this course.

The following are examples of analytical expressions:

X1 — 2, - f r - - , » . 2 - - I / 5  +  3I

If the functional relation y = f(x) is such that f dénotés an 
analytical expression, we say that the function y of x is repre- 
sented or defined analytically.

Examples of functions defined analytically are: (1) y = x*—2,

(2) f/ =  ^ - p  (^) y = V \ —x \ (4) y=smx,  (5) Q = nR \ and so forth.
Here, the functions are defined analytically by means of a 

single formula (a formula is understood to be an equality of two 
analytical expressions). In such cases one may speak of the natural 
domain of définition of the function.

The set of values of x for which the analytical expression on 
the right-hand side has a definite value is the natural domain 
of définition of a function represented analytically. Thus, the natu-
ral domain of définition of the function y = x*—2 is the infinité 
interval — o o < x < + o o ,  because the function is defined for ail

X - \-  1values of x. The function y — — r is defined for ail values of x,v x— I
with the exception of x=  1, because for this value of x the deno- 
minator vanishes. For the function y = V  1—x2, the natural domain 
of définition is the closed interval —l < x ^ l ,  and so on.

Note. It is sometimes necessary to consider only a part of the 
natural domain of a function, and not the whole domain. For
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20 Ch. 1. Number. Variable. Function

instance, the dependence of the area Q 
of a circle upon the radius R is defined 
by the function Q =  n/?a. The domain of 
this function, when ' considering the given 
geometrical problem, is the infinité interval 
0 <  Æ < +  oo. But the natural domain of 
this function is the infinité interval 
— oo <  R <  -f oo.

If the function y = f(x) is represented ana- 
lytically, it may be shown graphically on a 
coordinate xy-plane. Thus, the graph of the 
function y = x2 is a parabola as shown in 
Fig. 5.

1.8 BASIC ELEMENTARY FUNCTIONS.
ELEMENTARY FUNCTIONS

The basic elementury functions are the following analytically 
represented functions.

I. Power function: y = x*, where a  is a real number.*
II. General exponential function: y = ax, where a is a positive 

number not equal to unity.
III. Logarithmic function: y =  logax, where the logarithmic base 

a is a positive number not equal to unity.**
IV. Trigonométrie functions: y =- sin .v, y --- cos x, y — tan x,

y =  cot x, y — secx, y — esex.
V. Inverse trigonométrie functions:

y =  arcsin jc, y=  arccosjc, y = arctanjc, 
y =  arccot x, y = areseex, y = arccscjc.

Let us consider the domains of définition and the graphs of the 
basic elementary functions.

Power function y  =  x a.
1. a  is a positive integer. The function is defined in the infi-

nité interval — oo <  jc <  +  oo . In this case, the graphs of the func-
tion for certain values of a  hâve the form shown in Figs. 6 and 7.

2. a  is a négative integer. In this case, the function is defined 
for ail values of x with the exception of jc =  0. The graphs of the 
functions for certain values of a hâve the form shown in Figs. 8 
and 9.

Figs. 10, 11, and 12 show graphs of a power function with 
fractional rational values of a.

•If a  is irrational, this function is evaluated by taking logarithms and 
antilogarithms: iog y =  a  log x. It is assumed here that x >  0.

••Throughout this book, the Symbol log stands for the logarithm to the 
base 10.
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